ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 290-299

Submesoscale cyclonic eddy behind Cape Gvardeisky in the southeastern Baltic Sea: satellite observation and concurrent measurements

E.V. Krayushkin 1 , K.R. Nazirova 1 , O.Yu. Lavrova 1 , N.A. Knyazev 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 02.09.2020
DOI: 10.21046/2070-7401-2020-17-4-290-299
The results of concurrent satellite and boat observations of a submesoscale cyclonic eddy displayed in a Sentinel-2B MSI image behind Cape Gvardeisky (southeastern Baltic Sea) are presented. The eddy originated downstream of Cape Gvardeisky of the Sambian Peninsula by force of easterly winds that persisted for 3 days. This is a rare occasion as usually there occur anti-cyclonic eddies and dipoles due to mostly westerly winds. Joint analysis of the satellite data and fully synchronous measurements with an acoustic Doppler current profiler made it possible not only to estimate the horizontal dimensions of the eddy but also demonstrate that it spans the entire water column, from the surface to the bottom. Consecutive boat measurements with a time interval of about 7 h revealed the displacement of the eddy center at a velocity of 8.5 cm/sec. The eddy was displayed in the satellite image due to the presence of a tracer in the surface layer of water. In this case, it was an aggregation of cyanobacteria that was confirmed by probing with a chlorophyll a concentration meter inside and outside the eddy.
Keywords: submesoscale cyclonic eddy, currents behind capes, satellite observations, Sentinel-2 MSI, chlorophyll a concentration, concurrent measurements, acoustic Doppler current profiler, southeastern Baltic Sea
Full text

References:

  1. Ginzburg A., Bulycheva E., Kostianoy A., Solovyov D., Vortex dynamics in the Southeastern Baltic Sea from satellite radar data, Oceanology, 2015, Vol. 55, No. 6, pp. 805–813, DOI: 10.1134/S0001437015060065.
  2. Gurova E. S., O formirovanii i dinamike vikhrya u poberezh’ya Yugo-Vostochnoi Baltiki po dannym distantsionnogo zondirovaniya (On the formation and dynamics of an eddy at the coast of southeast Baltic based on remote sensing data), Vestnik Baltiiskogo federal’nogo universiteta im. I. Kanta, 2012, Issue 1, pp. 16–21.
  3. Zatsepin A. G., Kremenetskiy V. V., Ostrovskii A. G., Baranov V. I., Kondrashov A. A., Korzh A. O., Soloviev D. M., Submesoscale eddies at the Caucasus Black Sea shelf and the mechanisms of their generation, Oceanology, 2011, Vol. 51, No. 4, pp. 554–567, DOI: 10.1134/S0001437011040205.
  4. Elkin D. N., Zatsepin A. G., Laboratory investigation of the mechanism of the periodic eddy formation behind capes in a coastal sea, Oceanology, 2013, Vol. 53, No. 1, pp. 24–35, DOI: 10.1134/S0001437012050062.
  5. Karimova S. S., Lavrova O. Yu., Solov’ev D. M., Observation of eddy structures in the Baltic Sea with the use of radiolocation and radiometric satellite data, Izvestiya. Atmospheric and Oceanic Physics, 2012, Vol. 48, No. 9, pp. 1006–1013, URL: https://doi.org/10.1134/S0001433812090071.
  6. Kostianoy A. G., Ginzburg A. I., Sheremet N. A., Lavrova O. Yu., Mityagina M. I., Melkomasshtabnye vikhri Chernogo morya (Small-scale eddies in the Black Sea), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 1, pp. 248–259.
  7. Krayushkin E. V., Lavrova O. Yu., Nazirova K. R., Alferyeva Ya. O., Soloviev D. M., Formirovanie i rasprostranenie vikhrevogo dipolya za mysom Taran v Yugo-Vostochnoi Baltike (Formation and propagation of an eddy dipole at Cape Taran in the southeast Baltic Sea), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 214–221, DOI: 10.21046/2070-7401-2018-15-4-214-221.
  8. Lavrova O. Yu., Kostianoy A. G., Lebedev S. A., Mityagina M. I., Ginzburg A. I., Sheremet N. A., Kompleksnyi sputnikovyi monitoring morei Rossii (Complex Satellite Monitoring of the Russian Seas), Moscow: IKI RAN, 2011, 480 p.
  9. Lavrova O. Yu., Mityagina M. I., Sabinin K. D., Serebryany A. N., Izuchenie gidrodinamicheskikh protsessov v shel’fovoi zone na osnove sputnikovoi informatsii i dannykh podsputnikovykh izmerenii (Study of hydrodynamic processes in the shelf zone on the basis of satellite information and data from subsatellite measurements), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 98–129.
  10. Lavrova O. Yu., Mityagina M. I., Uvarov I. A., Loupian E. A., Tekushchie vozmozhnosti i opyt ispol’zovaniya informatsionnoi sistemy See the Sea dlya izucheniya i monitoringa yavlenii i protsessov na morskoi poverkhnosti (Current capabilities and experience of using the See the Sea information system for studying and monitoring phenomena and processes on the sea surface), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 266–287, DOI: 10.21046/2070-7401-2019-16-3-266-287.
  11. Loupian E. A., Proshin A. A., Burtsev M. A., Kashnitskii A. V., Balashov I. V., Bartalev S. A., Konstantinova A. M., Kobets D. A., Mazurov A. A., Marchenkov V. V., Matveev A. M., Radchenko M. V., Sychugov I. G., Tolpin V. A., Uvarov I. A., Opyt ekspluatatsii i razvitiya tsentra kollektivnogo pol’zovaniya sistemami arkhivatsii, obrabotki i analiza sputnikovykh dannykh (TsKP IKI-Monitoring) (Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 151–170, DOI: 10.21046/2070-7401-2019-16-3-151-170.
  12. Mityagina M. I., Lavrova O. Yu., Sputnikovye nablyudeniya vikhrevykh i volnovykh protsessov v pribrezhnoi zone severo-vostochnoi chasti Chernogo morya (Satellite observations of eddy and wave processes in the coastal waters of the north-eastern Black Sea), Issledovanie Zemli iz kosmosa, 2009, No. 5, pp. 72–79.
  13. Gurova E., Chubarenko B., Remote-sensing observations of coastal sub-mesoscale eddies in the south-eastern Baltic, Oceanologia, 2012, Vol. 54, No. 4, pp. 631–654.
  14. Karimova S., Gade M., Improved statistics of submesoscale eddies in the Baltic Sea retrieved from SAR imagery, Intern. J. Remote Sensing, 2016, Vol. 37, No. 10, pp. 2394–2414, DOI: 10.1080/01431161.2016.1145367.
  15. Kostianoy A. G., Ginzburg A. I., Lavrova O. Y., Mityagina M. I., Satellite remote sensing of submesoscale eddies in the Russian Seas, In: The Ocean in Motion. Circulation, Waves, Polar Oceanography, Velarde M., Tarakanov R., Marchenko A. (eds.), Springer-Verglag, 2018, pp. 397–413, available at: https://doi.org/10.1007/978-3-319-71934-4_24.
  16. Lavrova O., Krayushkin E., Golenko M., Golenko N., Effect of wind and hydrographic conditions on the transport of Vistula Lagoon waters into the Baltic Sea: results of a combined experiment, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 9, Issue 9, pp. 5193–5201, DOI: 10.1109/JSTARS.2016.25806022016.
  17. Lavrova O. Yu., Krayushkin E. V., Nazirova K. R., Strochkov A. Ya., Vortex structures in the Southeastern Baltic Sea: satellite observations and concurrent measurements, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, 2018, Vol. 10784, 1078404, DOI: 10.1117/12.2325463.
  18. Marmorino G. O., Holt B., Molemaker M. J., DiGiacomo P. M., Sletten M. A., Airborne synthetic aperture radar observations of “spiral eddy” slick patterns in the Southern California Bight, J. Geophysical Research, 2010, Vol. 115, Iss. C5. CiteID C05010, available at: https://doi.org/10.1029/2009JC005863.
  19. Munk W., Armi L., Fischer K., Zachariasen F., Spirals on the sea, Proc. Royal Society A, 2000, Vol. 456, pp. 1217–1280.
  20. Siegel H., Gerth M., Optical remote sensing applications in the Baltic Sea, Remote Sensing of the European Seas, Barale V., Gade M. (eds.), Springer-Verlag, 2008, pp. 91–102.
  21. Zhurbas V., Oh I. S., Park T., Formation and decay of a longshore baroclinic jet associated with transient coastal upwelling and downwelling: A numerical study with applications to the Baltic Sea, J. Geophysical Research, 2006, Vol. 111, C04014.
  22. Zhurbas V., Väli G., Kostianoy A., Lavrova O., Hindcast of the mesoscale eddy field in the Southeastern Baltic Sea: Model output vs satellite imagery, Russia J. Earth Sciences, 2019, Vol. 19, ES4006, DOI: 10.2205/2019ES000672.