ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 195-203

Obtaining time series of LAI to predict crop yield

E.V. Fedotova 1, 2 , Yu.A. Maglinets 1 , R.V. Brezhnev 1 , A.G. Vyrvinsky 1 
1 Siberian Federal University, Krasnoyarsk, Russia
2 Sukachev Institute of Forest SB RAS, Krasnoyarsk Scientific Center SB RAS, Krasnoyarsk, Russia
Accepted: 05.08.2020
DOI: 10.21046/2070-7401-2020-17-4-195-203
Evaluation of vegetation bio-productivity, yield prediction, is effectively carried out using simulation models of plant growth. To calculate the value of the aboveground biomass in these models, the leaf area index (LAI) is used. In the agromonitoring service of the Institute of Space and Information Technologies, a productivity forecasting component is being developed using available field map systems showing crops and remote sensing data in the public domain. In this paper, we propose an approach to solving the problem of obtaining the LAI time series during the growing season for agricultural objects. Landsat-8 OLI and Sentinel-2 medium resolution data are used. These data have time resolution restrictions. The use of daily MODIS data is not possible due to their low spatial resolution, taking into account the typical size of agricultural fields of Krasnoyarsk region central part. Algorithms for data fusion with low and medium spatial resolutions are considered to obtain NDVI with the necessary frequency in the absence of medium-resolution data. The construction of the NDVI using data from different systems for LAI estimation required the introduction of additive coefficients for time series alignment using the VEGA Pro service as the base values. The model of calculating LAI from NDVI in linear exponential form is used. The developed approach allows the LAI assessment with the frequency necessary for the work of the predictive model for yield estimating.
Keywords: LAI, NDVI, Landsat-8 OLI, Sentinel-2, data fusion, yield forecast, Krasnoyarsk Krai
Full text


  1. Botvich I. Yu., Emelyanov D. V., Larko A. A.,  Malchikov N. O., Ivchenko V. K., Demyanenko T. N., Shevyrnogov A. P., Otsenka prostranstvennogo raspredeleniya urozhainosti yarovogo yachmenya (Krasnoyarskii krai) po nazemnym i sputnikovym spektrofotometricheskim dannym (Estimation of the spatial distribution of spring barley yield (Krasnoyarsk Territory) from ground and satellite spectrophotometric data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 183–193.
  2. Bryksin V. M., Prognozirovanie urozhainosti zernovykh kul’tur na osnove dannykh distantsionnogo zondirovaniya i modelirovaniya bioproduktivnosti (Prediction of grain yield based on remote sensing data and bio-productivity modeling), Izvestiya Altayskogo gosudarstvennogo universiteta, 2010, No. 1, pp. 89–93.
  3. Evtyushkin A. V., Bryksin V. M., Rychkova N. V., Khvorova L. A., Verifikatsiya modifitsirovannoi modeli bioproduktivnosti EPIC (Verification of the modified EPIC bio-productivity model), Vestnik Baltiiskogo federal’nogo universiteta im. I. Kanta, 2014, Vol. 4, pp. 121–126.
  4. Eroshenko F. V., Bartalev S. A., Storchak I. G., Plotnikov D. E., Vozmozhnosti distantsionnoi otsenki urozhainosti ozimoi pshenitsy na osnove vegetatsionnogo indeksa fotosinteticheskogo potentsiala (The possibility of winter wheat yield estimation based on vegetation index of photosynthetic potential derived from remote sensing data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 99–112.
  5. Loupian E. A., Bartalev S. A., Sovremennye vozmozhnosti i tendentsii razvitiya informatsionnykh sistem distantsionnogo monitoringa sel’skokhozyaistvennykh zemel’ i posevov (Current opportunities and trends in the development of information systems for remote monitoring of agricultural land and crops), Primenenie sredstv distantsionnogo zondirovaniya Zemli v sel’skom khozyaistve (Application of earth remote sensing in agriculture), Proc. All-Russia Scientific Conf. with Intern. Participation, Saint Petersburg, 26–28 Sept. 2018, Saint Petersburg: FGBNU AFI, 2018, pp. 11–19.
  6. Lysenko S. A., Prognozirovanie urozhainosti sel’skokhozyaistvennykh kul’tur na osnove sputnikovogo monitoringa dinamiki ugleroda v nazemnykh ekosistemakh (Prediction of crop yields based on satellite monitoring of carbon dynamics in terrestrial ecosystems), Issledovanie Zemli iz kosmosa, 2019, No. 4, pp. 48–59.
  7. Savin I. Yu., Bartalev S. A., Loupian E. A., Tolpin V. A., Khvostikov S. A., Prognozirovanie urozhainosti sel’skokhozyaistvennykh kul’tur na osnove sputnikovykh dannykh: vozmozhnosti i perspektivy (Crop yield forecasting based on satellite data: opportunities and prospects), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 3, pp. 275–285.
  8. Khvorova L. A., Topazh A. G., Postroenie modelei agroekosistem i ikh adaptatsiya k konkretnym usloviyam (Construction of models of agroecosystems and their adaptation to specific conditions), Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Informatika, telekommunikatsii i upravlenie, 2011, No. 1, pp. 99–105.
  9. Shabanov N. V., Bartalev S. A., Eroshenko F. V., Plotnikov D. E., Razvitie vozmozhnostei distantsionnoi otsenki indeksa listovoi poverkhnosti po dannym MODIS (Development of capabilities for remote sensing estimate of leaf area index from MODIS data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 166–180.
  10. Biftu G. F., Gan T. Y., Semi-distributed, physically based, hydrologic modeling of the Paddle River basin, Alberta, using remotely sensed data, J. Hydrology, 2001, Vol. 244, pp. 137–156.
  11. Brezhnev R. V., Maglinets Yu. A., Recognition of the Inhomogeneous Structure of Agricultural Object for Solving Agromonitoring Tasks, CEUR Workshop Proc., 2017, Vol. 2033, pp. 247–251.
  12. Chen S., Wang W., Liang H., Evaluating the effectiveness of fusing remote sensing images with significantly different spatial resolutions for thematic map production, Physics and Chemistry of the Earth, Parts A/B/C, 2019, Vol. 110, pp. 71–80.
  13. Hassan M. A., Yang M., Rasheed A., Jin X., Xia X., Xiao Y., He Z., Time-Series Multispectral Indices from Unmanned Aerial Vehicle Imagery Reveal Senescence Rate in Bread Wheat, Remote Sensing, 2018, Vol. 10, Issue 6, Art. 809, 19 p.
  14. Huang J., Tian L., Liang S., Ma H., Becker-Reshef I., Huang Y., Su W., Zhang X., Zhu D., Wu W., Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model, Agricultural and Forest Meteorology, 2015, Vol. 204, pp. 106–121.
  15. Li S., Kang X., Fang L., Hu J., Yin H., Pixel-level image fusion: A survey of the state of the art, Information Fusion, 2017, Vol. 33, pp. 100–112.
  16. Loprestia M. F., Di Bellab C. M., Degioanni A. J., Relationship between MODIS-NDVI data and wheatyield: A case study in Northern Buenos Airesprovince, Argentina, Information Processing in Agriculture, 2015, Vol. 2, pp. 73–84.
  17. Sang‐Il N., Suk Young H., Yi‐Hyun K., Kyoung‐Do L., So‐Young J., Estimating Leaf Area Index of Paddy Rice from RapidEye Imagery to Assess Evapotranspiration in Korean Paddy Fields, Korean J. Soil Science and Fertilizer, 2013, Vol. 46, Issue 4, pp. 245–252.
  18. Schmidt M., Lucas R., Bunting P., Verbesselt J., Armston J., Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia, Remote Sensing of Environment, 2015, Vol. 158, pp. 156–168.
  19. Williams J. R., The Erosion-Productivity Impact Calculator (EPIC): Technical Reference, US Department of Agriculture, 1997, 235 p.