ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 137-153

Assessment of the post-pyrogenic dynamics of tundra vegetation in the northern part of Western Siberia over the past 50 years (1968–2018) based on detailed and high resolution remote sensing data

O.S. Sizov 1, 2 , P.R. Tsymbarovich 3 , E.V. Ezhova 4 , A.V. Soromotin 5 , N.V. Prikhodko 5 
1 Institute of Oil and Gas Problems RAS, Moscow, Russia
2 National University of Oil and Gas "Gubkin University", Moscow, Russia
3 Institute of Geography RAS, Moscow, Russia
4 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
5 University of Tyumen, Tyumen, Russia
Accepted: 16.06.2020
DOI: 10.21046/2070-7401-2020-17-4-137-153
The paper discusses the characteristics of recovery of tundra vegetation in the territories of the northern part of Western Siberia affected by fires. Medium and high spatial resolution satellite images are the main sources for the research. The data cover period of 1968–2018 and include images of Corona/KH-4b, Hexagon/KH-9, Resurs-P No. 1/2, SPOT-6/7, Landsat-1/4/5/7/8 and also ArcticDEM and old topographic maps. The results of comparative analysis show that natural tundra phytocenoses have high stability in the absence of external mechanical influences even in conditions of explicit climate change. Limited areas of natural tundra forests were found on drained parts of terraces and slopes of river valleys under the impact of the Gulf of Ob. On the other hand, significant changes in vegetation are characteristic of the burnt tundra. It was found that during the observations new burnt areas covered more than 60 % of studied test plots (excluding re-ignition areas). Alongside with that, frequency and intensity of fires increase synchronously with the level of anthropogenic activity (oil and gas production). The paper shows this tendency by the example of Yarudeyskoye field. The result of comparison of time series of high-resolution satellite images for the 157 reference samples shows that the vegetation actively recovered after fire in all cases. The most dramatic changes of vegetation were found in transitional conditions of forest tundra where in 56 % of cases dense spruce-larch forests and in 29% of cases sparse forests replaced moss-lichen areas. The depth of the active layer may probably be a limiting factor in the forest development in the permafrost regions. Reconnaissance observations in the area of Pangoda in August 2019 showed explicit differences in thawing depth in the burnt areas of 1968 and 1988 (102–119 cm) from the background conditions of the southern tundra (38 cm). Further detailed field studies are planned to confirm this pattern.
Keywords: tundra, vegetation, Western Siberia, fires, recovery, remote sensing, geoportal
Full text

References:

  1. Atlas Yamalo-Nenetskogo avtonomnogo okruga (Atlas of the Yamal-Nenets Autonomous Okrug), Moscow: GUGK, 2004, 248 p.
  2. Bartalev S. A., Egorov V. A., Loupian E. A., Uvarov I. A., Otsenka ploshchadei povrezhdenii nazemnykh ekosistem Severnoi Evrazii pozharami v 2000–2003 godakh po sputnikovym dannym instrumenta SPOT-Vegetation (Evaluation of areas of fire damages of terrestrial ecosystems of Northern Eurasia in 2000–2003 with satellite data of the SPOT-Vegetation tool), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2005, Vol. 2, No. 2, pp. 354–366.
  3. Il’ina I. S., Lapshina E. I., Lavrenko N. N., Rastitel’nyi pokrov Zapadno-Sibirskoi ravniny (Vegetation of the West Siberian Plain), Novosibirsk: Nauka, 1985, 248 p.
  4. Loupian E. A., Bartalev S. A., Balashov I. V., Egorov V. A., Ershov D. V., Kobets D. A., Senko K. S., Stytsenko F. V., Sychugov I. G., Sputnikovyi monitoring lesnykh pozharov v 21 veke na territorii Rossiiskoi Federatsii (tsifry i fakty po dannym detektirovaniya aktivnogo goreniya) (Satellite monitoring of forest fires in the 21st century in the territory of the Russian Federation (facts and figures based on active fires detection)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 158–175.
  5. Moskovchenko D. V., Moskovchenko M. D., Otsenka sovremennoi dinamiki landshaftov Zapolyarnogo mestorozhdeniya s ispol’zovaniem sputnikovykh dannykh (Assessment of modern landscape dynamics of the Zapolyarnoe gas field using satellite data), Vestnik Tumenskogo gosudarstvennogo universiteta. Ekologiya i prirodopol’zovanie, 2018, Vol. 4, No. 2, pp. 6–16.
  6. Barret K., Loboda T., McGuire A. D., Genet H., Hoy E., Kasischke E., Static and dynamic controls on fire activity at moderate spatial and temporal scales in the Alaskan boreal forest, Ecosphere, 2016, Vol. 7, No. 11, pp. 1–21.
  7. Epstein H., Bhatt U., Raynolds M., Walker D., Pinzon J., Tucker C. J., Forbes B. C., Horstkotte T., Macias-Fauria M., Martin A., Phoenix G., Bjerke J., Tømmervik H., Fauchald P., Vickers H., Myneni R., Park T., Dickerson C., Tundra greenness, Bull. American Meteorological Society, 2018, Vol. 99, No. 8, pp. 165–169.
  8. Gabysheva L. P., Isaev A. P., Forest fires impact on microclimatic and soil conditions in the forests of cryolithic zone (Yakutia, North-Eastern Russia), Sibirskij Lesnoj Zhurnal (Siberian Journal of Forest Science), 2015, No. 6, pp. 96–111.
  9. Hansen M. C., Potapov P. V., Moore R., Hancher M., Turubanova S. A., Tyukavina A., Thau D., Stehman S. V., Goetz S. J., Loveland T. R., Kommareddy A., Egorov A., Chini L., Justice C. O., Townshend J. R. G., High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, 2013, Vol. 342, No. 6160, pp. 850–853.
  10. Hewitt R. E., Hollingsworth T. N., Chapin F. S., Taylor D. L., Fire-severity effects on plant-fungal interactions after a novel tundra wildfire disturbance: implications for arctic shrub and tree migration, BMC ecology, 2016, Vol. 16, pp. 1–25.
  11. Jones P. D., Lister D. H., Osborn T. J., Harpham C., Salmon M., Morice C. P., Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010, J. Geophysical Research: Atmospheres, 2012, Vol. 117, No. D5, pp. 1–29.
  12. Landhausser S. M., Wein R. W., Postfire Vegetation Recovery and Tree Establishment at the Arctic Treeline: Climate-Change-Vegetation-Response Hypotheses, J. Ecology, 1993, Vol. 81, No. 4, pp. 665–672.
  13. Nitze I., Grosse G., Jones B. M., Romanovsky V. E., Boike J., Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic, Nature Communications, 2018, Vol. 9, No. 1, pp. 1–11.
  14. Partain J. L., Alden S., Bhatt U. S., Bieniek P. A., Brettschneider B. R., Lader R. T., Olsson P. Q., Rupp T. S., Strader H., Thoman R. L., Walsh J. E., York A. D., Ziel R. H., An Assessment of the Role of Anthropogenic Climate Change in the Alaska Fire Season of 2015, Bull. American Meteorological Society, 2016, Vol. 97, No. 12, pp. 14–18.
  15. Raynolds M. K., Walker D. A., Ambrosius K. J., Brown J., Everett K. R., Kanevskiy M., Kofinas G. P., Romanovsky V. E., Shur Y., Webber P. J., Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska, Global Change Biology, 2014, Vol. 20, No. 4, pp. 1211–1224.
  16. Rocha A. V., Loranty M. M., Higuera P. E., Mack M. C., Hu F. S., Jones B. M., Breen A. L., Rastetter E. B., Goetz S. J., Shaver G. R., The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing, Environmental Research Letters, 2012, Vol. 7, No. 4, pp. 1–8.
  17. Ruffner K. C., Corona: America’s First Satellite Program, New York: Morgan James Publishing, 2005, 364 p.
  18. Shimada M., Itoh T., Motooka T., Watanabe M., Tomohiro S., Thapa R., Lucas R., New global forest/non-forest maps from ALOS PALSAR data (2007–2010), Remote Sensing of Environment, 2014, Vol. 155, pp. 13–31.
  19. Sobrino J. A., Julien Y., García-Monteiro S., Surface Temperature of the Planet Earth from Satellite Data, Remote Sensing, 2020, Vol. 12, No. 2, pp. 1–10.
  20. Veraverbeke S., Rogers B. M., Goulden M. L., Jandt R. R., Miller C. E., Wiggins E. B., Randerson J. T., Lightning as a major driver of recent large fire years in North American boreal forests, Nature Climate Change, 2017, Vol. 7, No. 7, pp. 529–534.
  21. York A., Bhat U., Thoman R., Ziel R., Wildland fire in boreal and Arctic North America, Bull. American Meteorological Society, 2018, Vol. 99, No. 8, pp. 167–169.
  22. Young A. M., Higuera P. E., Duffy P. A., Hu F. S., Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change, Ecography, 2017, Vol. 40, pp. 606–617.
  23. Yu Q., Epstein H. E., Engstrom R., Shiklomanov N., Strelestskiy D., Land cover and land use changes in the oil and gas regions of Northwestern Siberia under changing climatic conditions, Environmental Research Letters, 2015, Vol. 10, No. 12, pp. 1–13.