ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 207-220

Sea surface salinity estimation using AMSR2 measurements over warm oceans

E.V. Zabolotskikh 1 , B. Chapron 2, 1 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
2 Institut Français de Recherche pour l’Exploitation de la Mer, Plouzané, France
Accepted: 14.04.2020
DOI: 10.21046/2070-7401-2020-17-4-207-220
An algorithm is presented to estimate sea surface salinity (SSS) of the upper ocean layer from the measurements of the Advanced Microwave Scanning Radiometer 2 (AMSR2) on GCOM-W1 satellite. The algorithm is based on the results of physical modeling of the brightness temperatures (Tbs) of the ocean-atmosphere system microwave radiation using contemporary models of the ocean emission and absorption in the atmospheric gases and clouds. The simulation was carried out for vertically and horizontally polarized radiation at the frequencies of 6.9 and 10.65 GHz, since radiation at higher frequencies is less sensitive to SSS. ERA-Interim reanalysis data on hydrometeorological parameters and climatological SSS values were used to calculate an array of Tbs. The sensitivity of the low-frequency AMSR2 measurements to salinity was estimated. It was shown that only vertically polarized brightness temperature at a frequency of 6.9 GHz at surface temperatures (Ts) exceeding 22 C had the sensitivity allowing salinity to be retrieved. The inverse problem was solved with a neural network (NN) approach. Tbs for vertically and horizontally polarized radiation at the frequencies of 6.9 and 10.65 GHz were used as input parameters to take into account the influence of surface wind, surface temperature, and atmospheric moisture content on the Tbs. The theoretical error of the algorithm was 1.6 ppm. The results of the algorithm application to the AMSR2 measurements were compared with the SSS satellite product based on the Soil Moisture Active Passive (SMAP) measurements for 2015 over the areas of the World Ocean with Ts > 22 °C. The algorithm error proved to be 1 ppm. The algorithm is characterized by overestimation of low and underestimation of high salinity values as compared with SMAP SSS data.
Keywords: sea surface salinity, satellite microwave radiometers, brightness temperatures, AMSR2, physical modeling, Neural Networks
Full text

References:

  1. Sadovskiy I. N., Sharkov E. A., Kuzmin A. V., Sazonov D. S., Pashinov E. V., Obzor modelei kompleksnoi dielektricheskoi pronitsaemosti vodnoi sredy, primenyaemykh v praktike distantsionnogo zondirovaniya (A review of the complex dielectric constant models of the aquatic environment used in remote sensing), Issledovaniya Zemli iz Kosmosa, 2014, Vol. 6, pp. 1–79.
  2. Aksoy M., Johnson J. T., A Comparative Analysis of Low-Level Radio Frequency Interference in SMOS and Aquarius Microwave Radiometer Measurements, IEEE Trans. Geoscience and Remote Sensing, 2013, Vol. 51, No. 10, pp. 4983–4992.
  3. Atkinson P. M., Tatnall A. R. L., Introduction Neural networks in remote sensing, Intern. J. Remote Sensing, 1997, Vol. 18, No. 4, pp. 699–709.
  4. Dee D. P., Uppala S. M., Simmons A. J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M. A., Balsamo G., Bauer P., Bechtold P., Beljaars A. C. M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A. J., Haimberger L., Healy S. B., Hersbach H., Hólm E. V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A. P., Monge-Sanz B. M., Morcrette J.-J., Park B. K., Peubey C., de Rosnay P., Tavolato C., Thépaut J. N., Vitart F., The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Quarterly J. Royal Meteorological Society, 2011, Vol. 137, No. 656, pp. 553–597.
  5. Dinnat E. P., Boutin J., Caudal G., Etcheto J., Issues concerning the sea emissivity modeling at L band for retrieving surface salinity, Radio Science, 2003, Vol. 38, No. 4, DOI: 10.1029/2002RS002637.
  6. Dinnat E. P., Le Vine D. M., Boutin J., Meissner T., Lagerloef G., Remote Sensing of Sea Surface Salinity: Comparison of Satellite and In Situ Observations and Impact of Retrieval Parameters, Remote Sensing, 2019, Vol. 11, No. 7, pp. 750, DOI: 10.3390/rs11070750.
  7. Ellison W., Balana A., Delbos G., Lamkaouchi K., Eymard L., Guillou C., Prigent C., New permittivity measurements of seawater, Radio Science, 1998, Vol. 33, pp. 639–648.
  8. Font J., Camps A., Borges A., Martín-Neira M., Boutin J., Reul N., Kerr Y. H., Hahne A., Mecklenburg S., SMOS: The challenging sea surface salinity measurement from space, Proc. IEEE, 2009, Vol. 98, No. 5, pp. 649–665.
  9. Grodsky S. A., Reverdin G., Carton J. A., Coles V. J., Year-to-year salinity changes in the Amazon plume: Contrasting 2011 and 2012 Aquarius/SACD and SMOS satellite data, Remote Sensing of Environment, 2014, Vol. 140, pp. 14–22.
  10. Kerr Y. H., Waldteufel P., Wigneron J.-P., Delwart S., Cabot F., Boutin J., Escorihuela M.-J., Font J., Reul N., Gruhier C., Juglea S. E., Drinkwater M. R., Hahne A., Martin-Neira M., Mecklenburg S., The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle, Proc. IEEE, 2010, Vol. 98, No. 5, pp. 666–687.
  11. Klein L., Swift C., An improved model for the dielectric constant of sea water at microwave frequencies, IEEE Trans. Antennas and Propagation, 1977, Vol. 25, No. 1, pp. 104–111.
  12. Klemas V., Remote sensing of sea surface salinity: an overview with case studies, J. Coastal Research, 2011, Vol. 27, No. 5, pp. 830–838.
  13. Lagerloef G. S., Swift C. T., Le Vine D. M., Sea surface salinity: The next remote sensing challenge, Oceanography, 1995, Vol. 8, No. 2, pp. 44–50.
  14. Lerner R. M., Hollinger J. P., Analysis of 1.4 GHz radiometric measurements from Skylab, Remote Sensing of Environment, 1977, Vol. 6, No. 4, pp. 251–269.
  15. Liu Q., Weng F., English S. J., An Improved Fast Microwave Water Emissivity Model, IEEE Trans. Geoscience and Remote Sensing, 2011, Vol. 49, No. 4, pp. 1238–1250.
  16. Meissner T., Wentz F. J., The complex dielectric constant of pure and sea water from microwave satellite observations, IEEE Trans. Geoscience and Remote Sensing, 2004, Vol. 42, No. 9, pp. 1836–1849.
  17. Meissner T., Wentz F. J., The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 8, pp. 3004–3026.
  18. Meissner T., Wentz F., Le Vine D., Aquarius Salinity Retrieval Algorithm: Algorithm Theoretical Basis Document (ATBD): RSS Technical Report 120117, 2017, DOI: 10.5067/DOCUM-AQR04.
  19. Pablos M., Piles M., González-Gambau V., Vall-llossera M., Camps A., Martínez J., SMOS and Aquarius radiometers: Inter-comparison over selected targets, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2014, Vol. 7, No. 9, pp. 3833–3844.
  20. Reul N., Saux-Picart S., Chapron B., Vandemark D., Tournadre J., Salisbury J., Demonstration of ocean surface salinity microwave measurements from space using AMSR-E data over the Amazon plume, Geophysical Research Letters, 2009, Vol. 36, No. 13, DOI: 10.1029/2009GL038860.
  21. Reul N., Chapron B., Zabolotskikh E., Donlon C., Quilfen Y., Guimbard S., Piolle J.-F., A revised L-band radio-brightness sensitivity to extreme winds under Tropical Cyclones: the five year SMOS-storm database, Remote Sensing of Environment, 2016, Vol. 180, pp. 274–291.
  22. Wentz F. J., A model function for ocean microwave brightness temperatures, J. Geophysical Research, 1983, Vol. 88, No. C3, pp. 1892–1908.
  23. Wentz F. J., Meissner T., Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations, Radio Science, 2016, Vol. 51, No. 5, pp. 381–391.
  24. Yueh S. H., West R., Wilson W. J., Li F. K., Njoku E. G., Rahmat-Samii Y., Error sources and feasibility for microwave remote sensing of ocean surface salinity, IEEE Trans. Geoscience and Remote Sensing, 2001, Vol. 39, No. 5, pp. 1049–1060.
  25. Zabolotskikh E. V., Mitnik L. M., Chapron B., New approach for severe marine weather study using satellite passive microwave sensing, Geophysical Research Letters, 2013, Vol. 40, No. 13, pp. 3347–3350.
  26. Zabolotskikh E. V., Mitnik L. M., Chapron B., An Updated Geophysical Model for AMSR-E and SSMIS Brightness Temperature Simulations over Oceans, Remote Sensing, 2014, Vol. 6., No. 3., pp. 2317–2342.
  27. Zabolotskikh E. V., Mitnik L. M., Chapron B., Radio-Frequency Interference Identification Over Oceans for C-and X-Band AMSR2 Channels, IEEE Geoscience and Remote Sensing Letters, 2015, Vol. 12, No. 8, pp. 1705–1709.
  28. Zabolotskikh E. V., Reul N., Chapron B., Geophysical Model Function for the AMSR2 C-Band Wind Excess Emissivity at High Winds, Geoscience and Remote Sensing Letters, 2016, Vol. 13, No. 1, pp. 78–81.