ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 164-178

New solutions for the reference data formation to improve the accuracy of the agrophysical soil properties determination from satellite data

Yu.I. Blokhin 1 , V.V. Yakushev 1 , S.Yu. Blokhina 1 , A.F. Petrushin 1 , O.A. Mitrofanova 1, 2 , E.P. Mitrofanov 1, 2 , A.V. Dvirnik 1 
1 Agrophysical Research Institute, Saint Petersburg, Russia
2 St. Petersburg State University, Saint Petersburg, Russia
Accepted: 21.07.2020
DOI: 10.21046/2070-7401-2020-17-4-164-178
The paper provides the approaches to the design and development of information-measuring systems for the reference data formation in order to improve the accuracy of the agrophysical soil properties determination from satellite data. The information-measuring systems (IMS), including wireless sensor networks (WSN), facilitate the monitoring of soil conditions with high precision and can efficiently detect adverse status. To determine the main properties of soil cover based on remote sensing data at global scale, in situ ground truth measurements based on IMS are required which allow to calibrate and validate the obtained satellite information. Complex monitoring of the spatial variability of soil agrophysical properties and the meteorological information influencing the management of crop production technologies has being implemented at the AFI experimental station (Leningrad region). The possibilities of the scientific and technical infrastructure of IMS for determining the main soil characteristics and detailing their spatial and temporal distribution can be expanded through on-the-go soil sensing and a wireless underground sensor network (WUSN) for improving the interpretation level and scalability of the agrophysical properties’ assessment based on satellite data. The structure of WUSN for soil moisture and temperature profiles monitoring with high temporal resolution and the structural scheme of the underground sensor node that communicate untethered through soil are considered. Preliminary results of field tests of mobile complex for determination of agrophysical characteristics of arable soil layer in real time are given. The obtained maps of the spatial distribution of soil moisture and electrical conductivity will determine the nature of the spatial heterogeneity of yield and used to determine the strategy of the spatial location of stationary sensor nodes of WUSN, that function during the vegetation period.
Keywords: information-measuring systems, soil studies, remote sensing data, monitoring systems, wireless underground sensor networks, soil agrophysical properties, mobile complex for on-the-go soil sensing
Full text

References:

  1. Ananyev I. P., Avtogeneratornye izmeritel’nye preobrazovateli dvukhkomponentnoi diel’kometrii sel’skokhozyaistvennykh materialov: Avtoref. diss. dokt. tekhn. nauk (Self-maintained dielcometric transducers for two-component complex permittivity of agricultural materials, Ext. abstract Dr. techn. sci. thesis), Saint Petersburg, 2009, 295 p.
  2. Anan’yev I. P., Zubets V. S., Belov A. V., Kuvaldin E. V., Kulibaba A. R., Zavitkov Yu. V., Blokhin Yu. I., Ustroistvo dlya vnutripochvennogo izmereniya agrotekhnologicheskikh kharakteristik pakhotnogo sloya pochvy v dvizhenii (Device for subsurface measuring agrotechnological characteristics of soil arable layer in motion), Patent RU 2537908, Reg. 10.01.2015.
  3. Blokhin Yu. I., Belov A. V., Blokhina S. Yu., Kompleksnaya sistema kontrolya vlazhnosti pochvy i lokal’nykh meteouslovii dlya interpretatsii dannykh distantsionnogo zondirovaniya (Integrated system for control of soil moisture and local weather conditions for remote sensing data interpretation), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 87–95, DOI: 10.21046/2070-7401-2019-16-3-87-95.
  4. Dem’yanov V. V., Savel’eva E. A., Geostatistika: teoriya i praktika (Geostatistics: theory and practice), Moscow, Nauka, 2010, 327 p.
  5. Dubenok N. N., Yanko Yu. G., Petrushin A. F., Kalinichenko R. V., Perspektivy ispol’zovaniya dannykh distantsionnogo zondirovaniya v otsenke sostoyaniya meliorativnykh sistem i effektivnosti ispol’zovaniya meliorirovannykh zemel’ (Remote sensing data in land-reclamation systems and reclaimed land management assessment), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 96–104, DOI: 10.21046/2070-7401-2019-16-3-96-104.
  6. Loupian E. A., Burtsev M. A., Proshin A. A., Kobets D. A., Razvitie podkhodov k postroeniyu informatsionnykh sistem distantsionnogo monitoringa (Evolution of remote monitoring information systems development concepts), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 53–66, DOI: 10.21046/2070-7401-2018-15-3-53-66.
  7. Loupian E. A., Proshin A. A., Burtsev M. A., Kashnitskii A. V., Balashov I. V., Bartalev S. A., Konstantinova A. M., Kobets D. A., Mazurov A. A., Marchenkov V. V., Matveev A. M., Radchenko M. V., Sychugov I. G., Tolpin V. A., Uvarov I. A., Opyt ekspluatatsii i razvitiya tsentra kollektivnogo pol’zovaniya sistemami arkhivatsii, obrabotki i analiza sputnikovykh dannykh (TsKP “IKI-Monitoring”) (Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 151–170, DOI: 10.21046/2070-7401-2019-16-3-151-170.
  8. Matveenko D. A., Yakushev V. V., Yakushev V. P., Pretsizionnoe upravlenie azotnym rezhimom yarovoi pshenitsy na osnove distantsionnogo zondirovaniya posevov (Precision management of the nitrogen status of spring wheat crops based on remote sensing data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 79–86, DOI: 10.21046/2070-7401-2019-16-3-79-86.
  9. Matveenko D. A., Voropaev V. V., Yakushev V. V., Blokhin Yu. I., Blokhina S. Yu., Mitrofanov E. P., Petrushin A. F., Sostoyanie i perspektivy sozdaniya novykh metodov kolichestvennoi otsenki vnutripolevoi izmenchivosti v tochnom zemledelii (Current state and trends of developing new methods for quantitative assessment of within-field heterogeneity for precision agriculture), Agrofizika, 2020, No. 1, pp. 59–70.
  10. Shpanev A. M., Eksperimental’naya baza dlya distantsionnogo zondirovaniya fitosanitarnogo sostoyaniya agroekosistem na Severo-Zapade RF (Experimental basis for remote sensing of phytosanitary condition of agroecosystems in the North-West of the Russian Federation), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 61–68, DOI: 10.21046/2070-7401-2019-16-3-61-68.
  11. Yakushev V. P., Dubenok N. N., Loupian E. A. (2019a), Opyt primeneniya i perspektivy razvitiya tekhnologii distantsionnogo zondirovaniya Zemli dlya sel’skogo khozyaistva (Earth remote sensing technologies for agriculture: application experience and development prospects), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 11–23, DOI: 10.21046/2070-7401-2019-16-3-11-23.
  12. Yakushev V. P., Kanash E. V., Yakushev V. V., Matveenko D. A., Rusakov D. V., Blokhina S. Yu., Petrushin A. F., Mitrofanov E. P. (2019b), Novye vozmozhnosti avtomatizatsii protsessa obnaruzheniya vnutripolevoi neodnorodnosti po giperspektral’nym snimkam i opticheskim kriteriyam (Advanced features of automated detection of within-field variability based on hyperspectral images and optical criteria), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 24–32, DOI: 10.21046/2070-7401-2019-16-3-24-32.
  13. Adamchuk V. I., Hummel J. W., Morgan M. T., Upadhyaya S. K., On-the-go soil sensors for precision agriculture, Computer and Electronics in Agriculture, 2004, Vol. 44, Issue 1, pp. 71–91.
  14. Albergel C., de Rosnay P., Gruhier C., Muñoz-Sabater J., Hasenauer S., Isaksen L., Kerr Y., Wagner W., Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations, Remote Sensing of Environment, 2012, Vol. 118, pp. 215–226.
  15. Ananev I. P., Zubets V. S., Belov A., Blokhin Yu. I., Mobile system for on-the-go measuring and mapping soil permittivity, electrical conductivity, moisture content, temperature and mechanical resistance, Proc. 3 rd Global Workshop on Proximal Soil Sensing, R. Gebbers, E. Luck, J. Ruhlmann (eds.), Potsdam, 26–29 May, 2013, 2013, pp. 201–209.
  16. Dorigo W. A., Wagner W., Hohensinn R., Hahn S., Paulik C., Xaver A., Gruber A., Drusch M., Mecklenburg S., van Oevelen P., Robock A., Jackson T., The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements, Hydrology and Earth System Science, 2011, Vol. 15, Issue 5, pp. 1675–1698.
  17. Gruber A., De Lannoy G., Albergel C., Al-Yaari A., Brocca L., Calvet J.-C., Colliander A., Cosh M., Crow W., Dorigo W., Draper C., Hirschi M., Kerr Y., Konings A., Lahoz W., McColl K., Montzka C., Muñoz-Sabater J., Peng J., Reichle R., Richaum P., Rüdiger C., Scanlon T., van der Schalie R., Wigneron J.-P.,Wagner W., Validation practices for satellite soil moisture retrievals: What are (the) errors? Remote Sensing of Environment, 2020, Vol. 244, available at: https://doi.org/10.1016/j.rse.2020.111806.
  18. Liu Y. Y., Dorigo W. A., Parinussa R. M., De Jeu R., Wagner W., McCabe M. F., Evans J. P., van Dijk A. I. J. M., Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment, 2012, Vol. 123, pp. 280–297.
  19. Mouazen A. M., Ramon H., Development of on-line measurement system of bulk density based on on-line measured draught, depth and soil moisture content, Soil and Tillage Research, 2006, Vol. 86, No. 2, pp. 218–229.
  20. Mouazen A. M., Maleki M. R., De Baerdemaeker J., Ramon H., On-line measurement of some selected soil properties using a VIS–NIR sensor, Soil and Tillage Research, 2007, Vol. 93, No. 1, pp. 13–27.
  21. Naeimi V., Scipal K., Bartalis Z., Hasenauer S., Wagner W., An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations, IEEE Trans. Geoscience and Remote Sensing, 2009, Vol. 47, No. 7, pp. 1999–2013, DOI: 10.1109/TGRS.2008.2011617.
  22. Njoku E. G., Wilson W. J., Yueh S. H., Dinardo S. J., Li F. K., Jackson T. J., Lakshmi V., Bolten J. D., Observations of soil moisture using a passive and active low-frequency microwave airborne sensor during SGP99, IEEE Trans. Geoscience and Remote Sensing, 2002, Vol. 40, Issue 12, pp. 2659–2673, DOI: 10.1109/TGRS.2002.807008.
  23. Oliver M. A., An overview of geostatistics and precision agriculture, In: Geostatistical Applications for Precision Agriculture, Netherlands: Springer, 2010, pp. 1–34.
  24. Peets S., Mouazen A. M., Blackburn K., Kuang B., Wiebensohn J., Methods and procedures for automatic collection and management of data acquired from on-the-go sensors with application to on-the-go soil sensors, Computers and Electronics in Agriculture, 2012, Vol. 81, pp. 104–112.
  25. Su C.-H., Ryu D., Young R. I., Western A. W., Wagner W., Inter-comparison of microwave satellite soil moisture retrievals over the Murrumbidgee Basin, southeast Australia, Remote Sensing of Environment, 2013, Vol. 134, pp. 1–11.
  26. Viscarra Rossel R. A., Adamchuk V. I., Sudduth K. A., McKenzie N. J., Lobsey C., Proximal soil sensing: an effective approach for soil measurements in space and time, Chapter 5, Advances in Agronomy, 2011, Vol. 113, pp. 243–291.