ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 221-230

Characteristics of short-period internal waves in the Chukchi Sea based on spaceborne SAR observations

E.V. Zubkova 1 , I.E. Kozlov 2, 1 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
2 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 02.06.2020
DOI: 10.21046/2070-7401-2020-17-4-221-230
In this work, we present the results of short-period internal waves (IWs) observations in the Chukchi Sea based on the analysis of spaceborne Envisat ASAR data acquired in May – October 2007 and 2011. Analysis of 365 SAR images enabled to identify 112 IWs packets. Most of them (74 %) were identified in July and August. Main spatial characteristics of IWs trains were obtained, and their key generation sites identified. It is shown that IWs trains are spread over the sea rather inhomogeneously. Most of them are found near the 75 m isobath, at the shelf break near Chukchi Peninsula and in the vicinity of Cape Point Hope. Very small number of IWs was identified over the deeper parts of the sea (>100 m depths). As noticed, the total number of IWs identified over the Chukchi Sea is much smaller than it was observed earlier over the other Eurasian Arctic Seas, which is plausibly attributed to the relatively smooth bottom topography and weak tidal currents in this region, as well as lower area of open water in the sea.
Keywords: short-period internal waves, SAR imaging, Chukchi Sea, Arctic Ocean
Full text

References:

  1. Zubkova E. V., Kozlov I. E., Kudryavtsev V. N. (2016a), Kharakteristiki korotkoperiodnykh vnutrennikh voln v Grenlandskom more po dannym sputnikovykh radiolokatsionnykh nablyudenii (Short-period internal waves characteristics in the Greenland sea based on SAR spaceborne observations), Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2016, No. 45, pp. 81–90.
  2. Zubkova E. V., Kozlov I. E., Kudryavtsev V. N. (2016b), Nablyudenie korotkoperiodnykh vnutrennikh voln v more Laptevykh na osnove sputnikovykh radiolokatsionnykh izmerenii (Spaceborne SAR observations of short-period internal waves in the Laptev Sea), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 6, pp. 61–71.
  3. Konyaev K. V., Sabinin K. D., Volny vnutri okeana (Waves in the ocean), Saint Petersburg: Gidrometeoizdat, 1992, 272 p.
  4. Lavrova O. Yu., Proyavlenie vnutrennikh voln na sputnikovykh izobrazheniyakh severo-vostochnoi chasti Chernogo morya v iyule 2017 g. (Internal waves observed in satellite images of the northeastern Black Sea in July 2017), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 309–315.
  5. Morozov E. G., Pisarev S. V., Vnutrennie volny i obrazovanie polynei v more Laptevykh (Internal waves and formation of polynyas in the Laptev Sea), Doklady Rossiiskoi akademii nauk, 2004, Vol. 398, No. 2, pp. 255–258.
  6. Morozov E. G., Pisarev S. V., Erofeeva S. Yu., Vnutrennie prilivnye volny v arkticheskikh moryakh Rossii (Internal tides in the Russian Arctic seas), In: Poverkhnostnye i vnutrennie volny v arkticheskikh moryakh (Surface and internal waves in the Arctic seas), Saint Petersburg: Gidrometeoizdat, 2002, pp. 217–235.
  7. Navrotskii V. V., Lyapidevskii V. Yu., Pavlova E. P., Vnutrennie volny i ikh biologicheskie effekty v shel’fovoi zone morya (Internal waves and their biological effects in the seas shelf zone), Vestnik Dal’nevostochnogo otdeleniya Rossiiskoi akademii nauk, 2012, Vol. 6, pp. 22–31.
  8. Carr M., Sutherland P., Haase A., Evers K. U., Fer I., Jensen A., Kalisch H., Berntsen J., Parau E., Thiem O., Davies P. A., Laboratory Experiments on Internal Solitary Waves in Ice-Covered Waters, Geophysical Research Letters, 2019, Vol. 46, No. 21, pp. 12230–12238, DOI: 10.1029/2019GL084710.
  9. Czipott P. V., Levine M. D., Paulson C. A., Menemenlis D., Farmer D. M., Williams R. G., Ice flexure forced by internal wave packets in the Arctic Ocean, Science, 1991, Vol. 254, No. 5033, pp. 832–835.
  10. Jackson C. R., An atlas of internal solitary-like waves and their properties, 2nd ed., Alexandria, VA: Global Ocean Associates, 2004.
  11. Kawaguchi Y., Nishino S., Inoue J., Fixed-point observation of mixed layer evolution in the seasonally ice-free Chukchi Sea: Turbulent mixing due to gale winds and internal gravity waves, J. Physical Oceanography, 2015, Vol. 45, No. 3, pp. 836–853.
  12. Kozlov I., Romanenkov D., Zimin A., Chapron B., SAR observing large-scale nonlinear internal waves in the White Sea, Remote Sensing of Environment, 2014, Vol. 147, pp. 99–107.
  13. Kozlov I., Kudryavtsev V., Zubkova E., Atadzhanova O., Zimin A., Romanenkov D., Myasoedov A., Chapron B. (2015a), SAR observations of internal waves in the Russian Arctic seas, Proc. IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2015, pp. 947–949.
  14. Kozlov I., Kudryavtsev V., Zubkova E. V., Zimin A. V., Chapron B. (2015b), Characteristics of short-period internal waves in the Kara Sea, Izvestiya, Atmospheric and Oceanic Physics, 2015, No. 9, Vol. 51, pp. 1073–1087, DOI: 10.1134/S0001433815090121.
  15. Kozlov I. E., Zubkova E. V., Kudryavtsev V. N., Internal solitary waves in the Laptev Sea: first results of spaceborne SAR observations, IEEE Geoscience and Remote Sensing Letters, 2017, Vol. 14, No. 11, pp. 2047–2051, DOI: 10.1109/LGRS.2017.2749681.
  16. Lavrova O., Mityagina M., Satellite Survey of Internal Waves in the Black and Caspian Seas, Remote Sensing, 2017, Vol. 9, No. 9, p. 892.
  17. Morozov E. G., Kozlov I. E., Shchuka S. A., Frey D. I., Internal tide in the Kara Gates Strait, Oceanology, 2017, Vol. 57, No. 1, pp. 8–18.
  18. Morozov E. G., Marchenko A. V., Filchuk K. V., Kowalik Z., Marchenko N. A., Ryzhov I. V., Sea ice evolution and internal wave generation due to a tidal jet in a frozen sea, Ocean Research, 2019, Vol. 87, pp. 179–191, DOI: 10.1016/j.apor.2019.03.024.
  19. Padman L., Dillon T. M., Turbulent mixing near the Yermak Plateau during the coordinated Eastern Arctic Experiment, J. Geophysical Research: Oceans, 1991, Vol. 96, No. C3, pp. 4769–4782.
  20. Padman L., Erofeeva S. A., Barotropic inverse tidal model for the Arctic Ocean, Geophysical Research Letters, 2004, Vol. 31, No. 2, 8 p.
  21. Rainville L., Woodgate R. A., Observations of internal wave generation in the seasonally ice‐free Arctic, Geophysical Research Letters, 2009, Vol. 36, No. 23, 5 p.
  22. Rippeth T. P., Lincoln B. J., Lenn Y.-D., Mattias Green J. A., Sundfjord A., Bacon S., Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography, Nature Geoscience, 2015, Vol. 8, pp. 191–194, DOI: 10.1038/ngeo2350.
  23. Vlasenko V., Stashchuk N., Hutter K., Sabinin K., Nonlinear internal waves forced by tides near the critical latitude, Deep Sea Research Part I, 2003, Vol. 50, No. 2, pp. 317–338, DOI: 10.1016/S0967-0637(03)00018-9.
  24. Winsor P., Björk G., Polynya activity in the Arctic Ocean from 1958 to 1997, J. Geophysical Research: Oceans, 2000, Vol. 105, No. C4, pp. 8789–8803.
  25. Zimin A. V., Kozlov I. E., Atadzhanova O. A., Chapron B., Monitoring short-period internal waves in the White Sea, Izvestiya, Atmospheric and Oceanic Physics, 2016, Vol. 52, No. 9, pp. 951–960.