Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 256-266
Analysis of the dynamics of ocean level surface in the Gulf of Alaska from satellite altimetry data
A.A. Romanov
1 , A.A. Romanov
1 , M.V. Ustinova
2 1 Central Research Institute for Machine Building, Moscow, Russia
2 Moscow Institute of Physics and Technology, Dolgoprudny, Russia
Accepted: 05.08.2020
DOI: 10.21046/2070-7401-2020-17-4-256-266
The paper presents the results of a study of the features of regional dynamics of the World Ocean using satellite altimetry data. The dynamic structures and eddy formations in the region, identified during a comprehensive experiment to study the general pelagic ecosystem of the Gulf of Alaska in 2019 are investigated. Presented are the seasonal and monthly maps of average sea surface height anomalies obtained from the TOPEX/Poseidon, Jason 1/2/3 satellites for the period from 1992 to 2019. The information of the Sentinel 3A/B satellite is used for a short period of 2019 at the time of the absence of data from the JASON-3 altimeter. The nature of the variability of the behavior of waters in the region is analyzed, the features of the identified eddy structures and frontal zones, as well as the features of the seasonal variability of the North Pacific and Alaskan currents, are investigated. Analysis of the average sea surface map made it possible to identify structures that are essentially stationary in nature, while leaving open the questions of possible change in the hydrological regime in the region for further research.
Keywords: satellite altimetry, remote sensing, sea surface dynamics, Alaska Bay, sea level anomalies
Full textReferences:
- Romanov A. A., Romanov A. A. (2018a), Kompleksnyi analis dannykh gidrologicheskoi s″emki i informatsii distantsionnogo zondirovaniya dlya otsenki promyslovoi obstanovki v akvatorii Norvezhskogo morya (Assessment of fishing conditions in the marine environment of Norwegian sea through an integrated analysis of hydrological and remote sensing data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 200–213.
- Romanov A. A., Romanov A. A. (2018b), Norvezhskoe more – 1997. Osnovnye resul’taty kompleksnogo nauchno-proizvodstvennogo eksperimenta (“Norwegian sea – 97”. The major results of comprehensive experiment), Moscow: IKI RAN, 2018, 311 p.
- Romanov A. A., Romanov A. A., Analiz dinamiki mezomasshtabnyikh struktur v akvatorii Norvezhskogo morya po dannyim distantsionnogo zondirovaniya i gidrologicheskikh semok (Assessment of mesoscale dynamics in the Norwegian Sea from remote sensing and hydrological survey data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 2, No. 4, pp. 207–217.
- Romanov A. A., Sapozhnikov V. V., Kompleksnyi nauchno-proizvodstvennyi eksperiment v Norvezhskom more s ispol’zovaniem kosmicheskikh, aviatsionnykh i sudovykh sredstv (NIS “Akademic Boris Petrov”, 2 iyulya – 1 avgusta 1997 g.) (Complex science experiment in Norwegian sea using space-, vessel- and airplain-based sensors (R/V Akademik Boris Petrov, July 2 – August 1, 1997)), Okeanologiya, 1998, Vol. 38, No 3, pp. 466–472.
- Romanov A. A., Shevchenko G. V., Sedaeva O. S., Sezonnye kolebaniya urovnya Okhotskogo morya po dannym beregovykh mareographnykh stantsii i sputnikovoi altimetrii, Issledovanie Zemli iz kosmosa (The seasonal variations of Okhotsk sea level on the basis of coastal gauges stations and satellite altimetry data), 2004, No. 6, pp. 59–72.
- Fefilov Yu. V., Razrabotka i sozdanie informatsionnoi tekhnologii distantsionnogo opredeleniya parametrov pervichnoi bioproductivnosti v sistemakh monitoringa okeana: Avtoref. diss. kand. tekhn. nauk (Information technology development of remote sensing of primary bioproductivity parameters in ocean monitoring systems, Ext. abstract of Cand. techn. sci. thesis), Moscow, 2013, 19 p.
- Shevchenko G. V., Romanov A. A., Opredelenie kharakteristik priliva v Okhotskom more po dannym sputnikovoi altimetrii (Tide characteristics determination on the basis of satellite altimetry data in Okhotsk sea), Issledovanie Zemli iz kosmosa, 2004, No. 1, pp. 49–62.
- Alaska Oceanographic Circulation Diagrams and Graphics (divided into 9 coastal subareas; compiled by John Whitney, NOAA SSC for Alaska), 2020, 29 p., available at: http://www.asgdc.state.ak.us/maps/cplans/base/AK-Circ.pdf.
- Benada R., PO.DAAC Merged GDR (T/P) Users Handbook, Rep. JPL D-11007, Pasadena: Jet Propulsion Lab., 1993, 111 p.
- Integrated Multi-Mission Ocean Altimeter Data for Climate Research TOPEX/Poseidon, Jason 1, 2, 3: User’s Handbook, Version. 4.2, California Insitune of Technology, US, 2019, 60 p., available at: https://podaac-tools.jpl.nasa.gov/drive/files/allData/merged_alt/L2/TP_J1_OSTM/docs/v050420version42multialthandbook.pdf.
- Pakhomov E. A., Deeg C., Esenkulova S., Foley G., Hunt B. P. V., Ivanov A., Jung H. K., Kantakov G., Kanzeparova A., Khleborodov A., Neville C., Radchenko V., Shurpa I., Slabinsky A., Somov A., Urawa S., Vazhova A., Vishnu P. S., Waters C., Weitkamp L., Zuev M., Beamish R., Summary of preliminary findings of the International Gulf of Alaska expedition onboard the R/V Professor Kaganovskiy during February 16 – March 18, 2019, NPAFC, Doc. 1858, 2019, 26 p., available at: https://npafc.org/wp-content/uploads/Public-Documents/2019/1858Prof-Kaganovskiy-Cruise-Summary.pdf.
- Product User Manual For OSTIA Near Real Time Level 4 SST Products over the Global Ocean, SST-GLO-SST-L4-NRT-OBSERVATIONS-010-001, Version 4.4, 2019, 31 p., available at: https://resources.marine.copernicus.eu/documents/PUM/CMEMS-SST-PUM-010-001.pdf.
- Products User Manual for all Ocean Color Products, Issue 5.0, EU Copernicus Marine Service, 2020, 75 p., available at: https://resources.marine.copernicus.eu/documents/PUM/CMEMS-OC-PUM-009-ALL.pdf.
- Romanov A. A., Fefilov Yu. V., An analysis and regional adjustment of SeaWiFS bio-optical algorithm for canary upwelling region, Proc. Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2002, p. 206.
- Xiu P., Thomas A., Chai F., Satellite bio-optical and altimeter comparisons of phytoplankton blooms induced by natural and artificial iron addition in the Gulf of Alaska, Remote Sensing of Environment, 2014, Vol. 145, pp. 38–46.