ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 51-65

Brightness temperature modeling and first results derived from the MTVZA-GY radiometer of the Meteor-M No. 2-2 satellite

G.M. Chernyavsky 1 , L.M. Mitnik 2 , V.P. Kuleshov 2 , M.L. Mitnik 2 , A.M. Sreltsov 1 , G.E. Evseev 1 , I.V. Cherny 1 
1 JSC Russian Space Systems, Moscow, Russia
2 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
Accepted: 28.04.2020
DOI: 10.21046/2070-7401-2020-17-3-51-65
The technical characteristics of the MTVZA-GY microwave radiometer on board the Meteor-M No. 2-2 meteorological satellite, launched into a sun-synchronous circular orbit 830 km high on July 5, 2019, are considered. The radiometer measures the Earth’s outgoing radiation at frequencies ν in the range ν = 5–200 GHz while scanning through a cone at an angle of 65° to the local normal. Experimental data on the temperature variations of the hot reference load are considered, which together with the relict radiation measurements are used for internal calibration of the radiometer. Internal calibration is performed on each scan, which provides correction of gain variations and data presentation in the antenna temperature scale on vertical (V) and horizontal (H) polarizations. Calculations of the brightness temperature spectra of the Earth’s outgoing radiation on the MTVZA-GY channels are performed. As input data, the radiosonde vertical profiles of atmospheric pressure, temperature and humidity, profiles of cloud liquid water content, values of water temperature and salinity and emisivity of various earth cover types have been taken. With the use of an external calibration of MTVZ-GY at the imager frequencies was performed. Global fields of of the Earth on descending (width of a strip L = 1500 km) and ascending (L = 2500 km) orbits resulted. The fields on vertical and horizontal polarizations give an idea of the ocean surface temperature and near surface wind speed, the total atmospheric water vapor content, total cloud liquid water content and precipitation and the characteristics of cyclones, fronts and atmospheric rivers over the ocean, the distribution of sea ice and the properties of Antarctica and Greenland ice shields, the temperature of the land and vegetation cover, etc. In connection with the planned launches of subsequent Meteor-M No. 2 satellites, the need to improve the brightness temperature modeling, the development of algorithms for parameter retrieval, radiometer calibration and product validation has been emphasized. The measurement data and products should be available for users in our country and abroad.
Keywords: remote sensing, microwave radiometry, modeling, calibration, MTVZA-GY, Meteor-M No. 2-2, global fields of brightness temperatures, water vapor, cloudiness, precipitation
Full text

References:

  1. Barsukov I. A., Boldyrev V. V., Ilgasov P. A., Nikitin O. V., Pantsov V. Yu., Prokhorov Yu. N., Strelnikov N. I., Streltsov A. M., Chernyi I. V., Chernyavskii G. M., Yakovlev V. V., SVCh-radiometer MTVZA-GYa sputnika Meteor-M No. 1 (Microwave radiometer MTVZA-GY onboard Meteor-M No. 1 satellite), Vserossiiskaya nauchno-tekhnicheskaya konferentsiya “Aktual’nye problemy raketno-kosmicheskogo priborostroeniya i informatsionnykh tekhnologii” (All-Russia Scientific and Technological Conf. “Current problems of rocket and space instrument development and information technology”), Proc. conf., Moscow: Fizmatlit, 2009, pp. 99–107.
  2. Barsukov I. A., Nikitin O. V., Streltsov A. M., Chernyi I. V., Kalibrovka SVCh-radiometra MTVZA-GYa (Calibration of MTVZA-GY microwave radiometer), Kosmonavtika i raketostroenie, 2010, Issue 1(58), pp. 131–137.
  3. Veselov V. M., Militskii Yu. A., Mirovskii V. G., Sharkov E. A., Etkin V. S., Eksperimental’naya metodika opredeleniya parametrov antenn radioteplovykh bortovykh kompleksov (Experimental technique for antenna parameter determination onboard radiothermal complexes), Issledovanie Zemli iz kosmosa, 1981, No. 2, pp. 63–75.
  4. Kardashev N. S., Strukov I. A., Sputnikovyi radioastronomicheskii eksperiment “Relikt”, Nauka i chelovechestvo, Moscow: Znanie, 1987, pp. 173–185.
  5. Mitnik L. M., Mitnik M. L., Algorithm vosstanovleniya skorosti privodnogo vetra po izmereniyam mikrovolnovogo radiometra AMSR-E so sputnika Aqua (Algorithm for near surface wind speed retrieval from measurements of Aqua AMSR-E microwave radiometer), Issledovanie Zemli iz kosmosa, 2011, No. 6, pp. 34–44.
  6. Mitnik L. M., Mitnik M. L., Kalibrovka i validatsiya — neobkhodimye sostavlyayushchie mikrovolnovykh radiometricheskikh izmerenii so sputnikov serii “Meteor-M” No. 2 (Calibratrion and validation are required components of microwave radiometric measurements from Meteor-M No. 2 series satellites), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 1, pp. 95–104.
  7. Mitnik L. M., Kuleshov V. P., Mitnik M. L., Streltsov A. M., Chernyavskii G. M., Chernyi I. V., Modelirovanie yarkostnykh temperatur i pervye rezul’tati, poluchennye mikrovolnovym radiometrom MTVZA GYa co sputnika “Meteor-M” No. 2-2 (Modeling of brightness temperatures and the first results obtained by MTVZA-GY microwave radiometer from Meteor-M No. 2-2 satellite), Materialy Semnadtsatoi Vserossiiskoi otkrytoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 17th Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), 11–15 Nov. 2019, Moscow: IKI RAN, 2019, p. 157.
  8. Uspenskii A. B., Asmus V. V., Kozlov A. A., Kramchaninova E. K., Streltsov A. M., Chernyavskii G. M., Chernyi I. V., Absolyutnaya kalibrovka kanalov atmosfernogo zondirovaniya sputnikovogo mikrovolnovogo radiometra MTVZA-GYa (Absolute calibration of atmospheric sounding channels of MTVZA-GY microwave radiometer), Issledovanie Zemli iz kosmosa, 2016, No. 5, pp. 57–70.
  9. Chernyavskii G. M., Mitnik L. M., Kuleshov V. P., Mitnik M. L., Chernyi I. V., Mikrovolnovoe zondirovanie okeana, atmosphery i zemnykh pokrovov po dannym sputnika “Meteor-M” No. 2. (Microwave sensing of the Ocean, atmosphere and land surface from Meteor-M No. 2 satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 78–100, DOI: 10.21046/2070-7401-2018-15-4-78-100.
  10. Gorodetskaya I. V., Tsukernik M., Claes K., Ralph M. F., Neff W. D., Van Lipzig N. P. M., The role of atmospheric rivers in anomalous snow accumulation in East Antarctica, Geophysical Research Letters, 2014, Vol. 41, DOI: 10.1002/2014GL060881.
  11. Hollinger J. P., Pierce J. L., Poe G. A., SSM/I instrument and evaluation, IEEE Trans. Geoscience and Remote Sensing, 1990, Vol. 28, No. 5, pp. 781–790, available at: http://aether.lbl.gov/www/projects/cobe/COBE_home/cobe_home.html.
  12. Imaoka K., Fujimoto Y., Kachi M., Takishima T., Shiomi K., Mikai H., Mutoh T., Yoshikawa M., Shibata A., Post-launch calibration and data evaluation of AMSR-E, Proc. IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS), Toulouse, France, 21–25 July 2003, Vol. l, pp. 666–668.
  13. Jones W. L., Park J. D., Soisuvarn S., Hong L., Gaiser P. W., Germain K. M. St., Deep-space calibration of the WindSat Radiometer, IEEE Trans. Geoscience and Remote Sensing, 2006, Vol. 44, No. 3, pp. 476–495.
  14. Lewis D., Rare warming over Antarctica reveals power of stratospheric models, Nature, 2019, Vol. 574, pp. 160–161, DOI: 10.1038/d41586-019-02985-8.
  15. Meissner T., Wentz F. J., The complex dielectric constant of pure and sea water from microwave satellite observations, IEEE Trans. Geoscience and Remote Sensing, 2004, Vol. 42, No. 9, pp. 1836–1849.
  16. Meissner T., Wentz F. J., The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and Earth incidence angles, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 8, pp. 3004–3026.
  17. Meteorology of the Southern Hemisphere: Meteorological Monographs, Karoly D. J., Vincent D. G. (eds.), No. 49, Vol. 27, Boston: American Meteorological Society, 1998, 410 p., DOI: 10.1007/978-1-935704-10-2.
  18. Mitnik L. M., Mitnik M. L., Retrieval of atmospheric and ocean surface parameters from ADEOS-II AMSR data: comparison of errors of global and regional algorithms, Radio Science, 2003, Vol. 38, No. 4, 8065, DOI: 10.1029/2002RS002659.
  19. Mitnik L. M., Mitnik M. L., Zabolotskikh E. V., Microwave sensing of the atmosphere-ocean system with ADEOS-II AMSR and Aqua AMSR-E, J. Remote Sensing Society of Japan, 2009, Vol. 29, No. 1, pp. 156–165.
  20. Mitnik L., Kuleshov V., Mitnik M., Streltsov A. M., Cherniavsky G., Cherny I., Microwave scanner sounder MTVZA-GY on new Russian meteorological satellite Meteor-M N 2: modeling, calibration and measurements, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2017, Vol. 10, No. 7, pp. 3036–3045, DOI: 10.1109/JSTARS.2017.2695224.
  21. Mitnik L., Kuleshov V., Chernyavsky G., Cherny I. (2018a), External calibration of MTVZA-GY/Meteor-M No. 2 imager channels, GSICS Quarterly Newsletter, 2018, Vol. 12, No. 1, pp. 9–10, DOI: 10.7289/V5/QN-GSICS-12-1-2018.
  22. Mitnik L. M., Kuleshov V. P., Mitnik M. L., Baranyuk A. V. (2018b), Passive microwave observations of South America and surrounding oceans from Russian Meteor-M No. 2 and Japan GCOM-W1 satellites, Intern. J. Remote Sensing, 2018, Vol. 39, No. 13, pp. 4513–4530, DOI: 10.1080/01431161.2018.1425569.
  23. Mitnik L. M., Kuleshov V. P., Pichugin M. K., Mitnik M. L. (2018c), Sudden stratospheric warming in 2015–2016: Study with satellite passive microwave data and reanalysis, Proc. IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS), Valencia, Spain, 23–27 July 2018, pp. 5560–5563, DOI: 10.1109/IGARSS.2018.8517495.
  24. Prakash S., Norouzi H., Azarderakhsh M., Blake R., Tesfagiorgis K., Global land surface emissivity estimation from AMSR2 observations, IEEE Geoscience and Remote Sensing Letters, 2016, Vol. 13, No. 9, pp. 1270–1274, DOI: 10.1109/LGRS.2016.2581140.
  25. Ralph F. M., Dettinger M. D., Lavers D., Gorodetskaya I. V., Martin A., Viale M., White A. B., Oakley N., Rutz J., Spackman J. R., Wernli H., Cordeira J., Atmospheric rivers emerge as a global science and application focus, Bull. American Meteorological Society, 2017, Vol. 98, No. 9, pp. 1969–1973.
  26. Rosenkranz P. W., Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements, IEEE Trans. Geoscience and Remote Sensing, 2001, Vol. 39, No. 11, pp. 2429–2435.
  27. Surdyk S., Using microwave brightness temperature to detect short-term surface air temperature changes in Antarctica: An analytical approach, Remote Sensing Environment, 2002, Vol. 80, pp. 256–271.
  28. Weng F., Zou X., Sun N., Yang H., Tian M., Blackwell W. J., Wang X., Lin L., Anderson K., Calibration of Suomi National Polar-Orbiting Partnership (NPP) Advanced Technology Microwave Sounder (ATMS), J. Geophysical Research: Atmospheres, 2013, Vol. 118, pp. 1–14.
  29. Wentz F. J., Ashcroft P., Gentemann C., Post-launch calibration of the TRMM Microwave Imager, IEEE Trans. Geoscience and Remote Sensing, 2001, Vol. 39, No. 2, pp. 415–422.
  30. Yamazaki Y., Matthias V., Miyoshi Y., Stolle C., Siddiqui T., Kervalishvili G., Laštovička J., Kozubek M., Ward W., Themens D. R., Kristoffersen S., Alken P., September 2019 Antarctic sudden stratospheric warming: Quasi-6-day wave burst and ionospheric effects, Geophysical Research Letters, 2020, Vol. 47, e2019GL086577, available at: https://doi.org/10.1029/2019GL086577.