ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 187-201

Interannual variability in sea ice area of the Antarctic regions

V.N. Malinin 1 , P.A. Vainovskу 2 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
2 LLC “Prognoz”, Saint Petersburg, Russia
Accepted: 28.04.2020
DOI: 10.21046/2070-7401-2020-17-3-187-201
The results of the analysis of formation of trends and frequency structure of the maximum, minimum and average annual sea ice extent (SIE) of various regions of the Southern Hemisphere for the period 1979–2017 inferred from satellite data are presented. The contribution of average annual SIE trends to the variance of the initial time series of individual regions is 6–13 %. Therefore, long-term inertial changes are not characteristic of the interannual course of SIE, thus complicating their mathematical description. It is shown that the character of interannual variability of sea ice in the Antarctic has many mysteries. A debating point is SIE increase until 2014, its rapid degradation being even more mysterious with the Antarctic SIE reduction by 2 million km2 during 3 years (2015–2017). It has been revealed that the formation of interannual fluctuations in sea ice in different sectors of the Antarctic occurs mainly under the influence of local conditions. The sector of the Bellingshausen and Amundsen Seas is the only region in the Southern Hemisphere where SIE is reducing. An analysis of the frequency structure of SIE time series following the trend elimination has shown that they represent a stationary random process developing according to the type of “white noise” model. But since the “white noise” accounts for 90 % of the variance of the SIE time series of the Antarctic, the qualitative description of the interannual variability of the sea ice area by deterministic models becomes impossible.
Keywords: sea ice, climate, Antarctic, trends, atmospheric circulation, circumpolar deep water
Full text

References:

  1. Alekseev G. V., Glock N. I., Vyazilova A. E., Ivanov N. E., Kharlanenkova N. E., Smirnov A. V., Vliyanie temperatury poverkhnosti okeana v tropikakh na antarkticheskii morskoi led v period global’nogo potepleniya (The effect of ocean surface temperature in the tropics on the Antarctic sea ice during global warming), Led i Sneg, 2019, Vol. 59, No. 2, pp. 213–221.
  2. Alekseeva T. A., Tikhonov V. V., Frolov S. V., Raev M. D., Repina I. A., Sokolova Yu. V., Afanasyeva E. V., Sharkov E. A., Serovetnikov S. S., Sravnenie splochennosti ledyanogo pokrova po dannym sputnikovoi mikrovolnovoi radiometrii s dannymi vizual’nykh sudovykh nablyudenii (Comparison of the cohesion of the ice cover according to satellite microwave radiometry with the data of visual ship observations), Issledovanie Zemli iz kosmosa, 2018, No. 6, pp. 65–76.
  3. Danilov A. I., Lagun V. E., Klepikov A. V., Kattsov V. M., Vavulin S. B., Tekushchie izmeneniya klimata Antarktiki i stsenarii ego budushchikh izmenenii (Current Antarctic climate changes and scenarios of its future changes), Arktika i Antarktika, 2003, No. 2, pp. 114–125.
  4. Zabolotskikh E. V., Obzor metodov vosstanovleniya parametrov ledyanogo pokrova po dannym sputnikovykh mikrovolnovykh radiometrov (A review of methods for reconstructing ice cover parameters from satellite microwave radiometers), Izvestiya Rossiskoi akademii nauk. Fizika atmosfery i okeana, 2019, Vol. 55, No. 1, pp. 128–151.
  5. Ivanov V. V., Alekseev V. A., Alekseeva T. A., Koldunov N. V., Repina I. A., Smirnov A. V., Arkticheskii ledyanoi pokrov stanovitsya sezonnym? (Does Arctic ice cover become seasonal?), Issledovaniya Zemli iz kosmosa, 2013, No. 4, pp. 50–65.
  6. Malinin V. N., Uroven’ okeana: nastoyashchee i budushchee (Ocean level: present and future), Saint Petersburg: RGGMU, 2012, 260 p.
  7. Malinin V. N., Vainovsky P. A., K sravneniyu kharakteristik mezhgodovoi izmenchivosti ploshchadi morskogo l’da Severnogo i Yuzhnogo polusharii (Comparison of the characteristics of interannual variability in the area of sea ice in the Northern and Southern Hemispheres), Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2019, No. 57, pp. 77–90.
  8. Malinin V. N., Gordeeva S. M., Izmenchivost’ vlagosoderzhaniya atmosfery nad okeanom po sputnikovym dannym (The variability of the atmospheric moisture content over the ocean according to satellite data), Issledovanie Zemli iz kosmosa, 2015, No. 1, pp. 3–11.
  9. Maslennikov V. V., Klimaticheskie kolebaniya i morskaya ekosistema Antarktiki (Climatic fluctuations and the marine ecosystem of the Antarctic), Moscow: VNIRO, 2003, 295 p.
  10. Semenov V. A., Martin T., Berens L. K., Latif M., Astafyeva E. S., Izmeneniya ploshchadi arkticheskikh morskikh l’dov v ansamblyakh klimaticheskikh modelei CMIP3 i CMIP5 (Changes in the area of Arctic sea ice in the ensembles of climatic models CMIP3 and CMIP5), Led i Sneg, 2017, Vol. 57, No. 1, pp. 77–107.
  11. Tikhonov V. V., Raev M. D., Sharkov E. A., Boyarskiy D. A., Repina I. A., Komarova N. Yu., Monitoring morskogo l’da polyarnykh regionov s ispol’zovaniyem sputnikovoi mikrovolnovoi radiometrii (Monitoring of sea ice in the polar regions using satellite microwave radiometry), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 150–169.
  12. Tikhonov V. V., Raev M. D., Sharkov E. A., Boyarskiy D. A., Repina I. A., Komarova N. Yu., Sputnikovaya mikrovolnovaya radiometriya morskogo l’da polyarnykh regionov: Obzor (Satellite microwave radiometry of sea ice in the polar regions: Overview), Issledovanie Zemli iz kosmosa, 2016, No. 4, pp. 65–84.
  13. Shalina E. V., Bobylev L. P., Izmenenie ledovykh uslovii v Arktike soglasno sputnikovym nablyudeniyam (Change in ice conditions in the Arctic according to satellite observations), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 28–41.
  14. Agnew T., Howell S., The use of operational ice charts for evaluating passive microwave ice concentrationdata, Atmosphere-Ocean, 2003, Vol. 41, No. 4, pp. 317–331.
  15. Antarctic Sea Ice Variability in the Southern Ocean-Climate System: Proc. Workshop, Thomas K., Macalady A. (eds.), Washington, D. C.: National Academies Press, 2017, 82 p.
  16. Bintanja R., Van Oldenborgh G. J., Drijfhout S. S., Wouters B., Katsman C. A., Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion, Nature Geoscience, 2013, Vol. 6(5), pp. 376–379.
  17. Gong D., Wang S., Definition of Antarctic oscillation index, Geophysical Research Letters, 1999, Vol. 26, pp. 459–462.
  18. Goosse H., Zunz V., Decadal trends in the Antarctic sea ice extent ultimately controlled by ice-ocean feedback, The Cryosphere, 2014, Vol. 8, No. 2, pp. 453–470.
  19. Hellmer H. H., Impact of Antarctic ice shelf basal melting on sea ice and deep ocean properties, Geophysical Research Letters, 2004, Vol. 31, L10307.
  20. Holland P. R., The seasonality of Antarctic sea ice trends, Geophysical Research Letters, 2014, Vol. 41, pp. 4230–4237.
  21. Holland P. R., Kwok R., Wind-driven trends in Antarctic sea-ice drift, Nature Geoscience, 2012, Vol. 5, pp. 872–875.
  22. Ivanova N. O., Johannessen M., Pedersen L. T., Tonboe R. T., Retrieval of Arctic Sea Ice Parameters by Satellite Passive Microwave Sensors: A Comparison of Eleven Sea Ice Concentration Algorithms, IEEE Trans. Geoscience Remote Sensing, 2014, Vol. 52, No. 11, pp. 7233–7246.
  23. Jacobs S., Comiso J., Climate Variability in the Amundsen and Bellingshausen Seas, J. Climate, 1997, Vol. 10, pp. 697–709.
  24. Lefebvre W., Goosse H., An analysis of the atmospheric processes driving the large-scale winter sea ice variability in the Southern Ocean, J. Geophysical Research, 2008, Vol. 113, C02004.
  25. Liu J., Curry J. A., Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice, Proc. National Academy of Sciences, 2010, Vol. 107, No. 34, pp. 14987–14992.
  26. Llovel W., Terray L., Observed southern upper-ocean warming over 2005–2014 and associated mechanisms, Environmental Research Letters, 2016, Vol. 11, 124023.
  27. Mahlstein I., Gent P. R., Solomon S., Historical Antarctic mean sea ice area, sea ice trends, and winds in CMIP5 simulations, J. Geophysical Research, 2013, Vol. 118, No. 11, pp. 5105–5110.
  28. Marshall G. J., Trends in the Southern Annular Mode from observations and reanalyses, J. Climate, 2003, Vol. 16, pp. 4134–4143.
  29. Meier W. N., Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic peripheral seas, IEEE Trans. Geoscience Remote Sensing, 2005, Vol. 43, No. 6, pp. 1324–1337.
  30. Parkinson C. L., Global Sea Ice Coverage from Satellite Data: Annual Cycle and 35-Yr Trends, J. Climate, 2014, Vol. 27, pp. 9377–9382.
  31. Parkinson C. L., A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic, PNAS, 2019, Vol. 116, No. 29, pp. 14414–14423.
  32. Polvani L. M., Smith K. L., Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5, Geophysical Research Letters, 2013, Vol. 40, No. 12, pp. 3195–3199.
  33. Sallee J. B., Southern Ocean warming, Oceanography, 2018, Vol. 31, No. 2, pp. 52–62.
  34. Stammerjohn S. E., Maksym T., Massom R. A., Lowry K. E., Arrigo K. R., Yuan X., Raphael M., Randall-Goodwin E., Sherrell R. M., Yager P. L., Seasonal sea ice changes in the Amundsen Sea, Antarctica, over the period of 1979–2014, Elementa: Science of the Anthropocene, 2016, Vol. 3, 000055, DOI: 10.12952/journal.elementa.000055 elementascience.org.
  35. Steig E. J., Ding Q., Battisti D. S., Jenkins A., Tropical forcing of Circumpolar Deep Water Inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica, Annals of Glaciology, 2012, Vol. 53, No. 60, pp. 19–28.
  36. Turner J., Overland J., Contrasting climate change in the two polar regions, Polar Research, 2009, Vol. 28, No. 2, pp. 146–164.
  37. Turner J., Maksym T., Phillips T., Marshall G. J., Meredith M. P., Impact of changes in sea ice advance on the large winter warming on the western Antarctic Peninsula, Intern. J. Climatology, 2012, Vol. 33, pp. 852–861.
  38. Turner J., Bracegirdle T. J., Phillips T., Marshall G. J., Hosking J. S., An initial assessment of Antarctic sea ice extent in the CMIP5 models, J. Climate, 2013, Vol. 26, No. 5, pp. 1473–1484.
  39. Turner J., Hosking J. S., Marshall G. J., Phillips T., Bracegirdle T. J., Antarctic sea ice increase consistent with intrinsic variability of the Amundsen Sea Low, Climate Dynamics, 2016, Vol. 46, No. 7–8, pp. 2391–2402.
  40. Zhang J., Modeling the impact of wind intensification on Antarctic sea ice volume, J. Climate, 2013, Vol. 27, pp. 202–214.
  41. Zunz V., Goosse H., Massonnet F., How does internal variability infuence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? The Cryosphere, 2013, Vol. 7, No. 2, pp. 451–468.