ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 231-239

Cyclogenesis in the Mediterranean-Black Sea region from satellite data

T.M. Bayankina 1 , Т.Е. Danova 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 13.04.2020
DOI: 10.21046/2070-7401-2020-17-3-231-239
The paper discusses the cyclonic activity in the Mediterranean-Black Sea region from January to March 1996–2009 on the basis of Meteosat satellite data on a 10×10 km grid. To identify the areas of cyclogenesis, the cluster analysis method was used. To assess the quality of the selected coordinates of the cloud vortices centers, they were compared with the coordinates of baric centers placed on surface synoptic maps and on maps of baric topography at the 500 hPa level. It was found that the frequency of cloud vortices over the Mediterranean during this period corresponds to that of cyclones. The performed analysis of the Mediterranean cyclones forming areas makes it possible to identify four main areas of cyclone origin over the Mediterranean: North-Western, South-Western, Central and Eastern, with the Balkan Peninsula and the Black Sea set apart. The number of days with cyclones found in satellite data was compared with NCEP/NCAR re-analysis data. Pronounced cyclogenesis in the Northwest (North-Western) region of the Mediterranean (54.5 %) was found, and areas of winter cyclogenesis in the Black Sea were identified. In the areas of cyclonic activity, the troposphere contains jet currents with a vertical thickness of up to 8.5 km. In the lower layer of the troposphere, right wind rotation was observed, and in the middle and upper troposphere with significant vertical gradients, left wind rotation was observed. Excess of the moisture content and moisture transfer above their average values on three or more times promotes the intensification of precipitation processes.
Keywords: Mediterranean-Black Sea region, satellite images, cyclone parameters, moisture-dynamic characteristics of the troposphere
Full text

References:

  1. Akperov M. G., Mokhov I. I., Dembitskaya M. A., Arkticheskie mezotsiklony po sputnikovym dannym, dannym reanaliza i model’nym raschetam (Arctic mesocyclones from satellite data, reanalyses data and model simulations), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 297–304.
  2. Andronnikov V. V., Savchenko P. D., Prognozirovanie frontal’nykh tsiklonov s ispol’zovaniem informatsii s meteorologicheskikh kosmicheskikh apparatov (Prognostication of frontal cyclones with the use the Information from Meteorological Satellites), Geliogeofizicheskie issledovaniya, 2015, pp. 1–5.
  3. Balinova B. C., Statistika v voprosakh i otvetakh (Statistics in questions and answers), Moscow: Izd. TK Velbi, Prospekt, 2004, 344 p.
  4. Bayankina T. M., Baza dannykh “Tsiklonicheskaya aktivnost’ Sredizemnomorsko-Chernomorskogo regiona i parametry oblachnykh vikhrei tsiklonov, poluchennykh po sputnikovym izobrazheniyam s ISZ Meteosat za period 1996–2009, za kholodnyi period s noyabrya po mart” (Cyclonic activity of the Mediterranean-Black Sea region and the parameters of cloud vortices of cyclones obtained from satellite images from the Meteosat satellite for the period 1996–2009, for the cold period from November to March), a. s. No. 54367 Ukraina, Reg. 02.04.2014.
  5. German M. A., Kosmicheskie metody issledovaniya v meteorologii (Space methods of research in meteorology), Leningrad: Gidrometeoizdat, 1985, 351 p.
  6. Zhalyu R., Popova T. P., Ispol’zovanie snimkov oblachnosti dlya prognoza tsiklogeneza (Using images of clouds for cyclogenesis forecast), Meteorologiya i gidrologiya, 1974, Vol. 4, pp. 14–23.
  7. Zverev A. S., Sinopticheskaya meteorologiya (Synoptic meteorology), Leningrad: Gidrometeoizdat, 1977, 711 p.
  8. Lavrova A. A., Glebova E. S., Trosnikov I. V., Kaznacheeva V. D., Modelirovanie evolyutsii serii sredizemnomorskikh tsiklonov s pomoshch’yu regional’noi modeli atmosfery (Modeling the evolution of a series of Mediterranean cyclones using a regional atmospheric model), Meteorologiya i gidrologiya, 2010, Vol. 6, pp. 5–15.
  9. Nesterov E. S., Ekstremal’nye tsiklony nad moryami evropeiskoi chasti Rossii (Extreme cyclones over the seas of the European part of Russia), Gidrometeorologicheskie issledovaniya i prognozy, 2018, No. 1(367), pp. 97–115.
  10. Khutorova O. G., Khutorov V. E., Dement’ev V. V., Blizorukov A. S., Korchagin G. E., Izmenchivost’ polei atmosfernogo vlagosoderzhaniya po dannym zondirovaniya signalami GPS-GLONASS v okrestnostyakh g. Kazani (Atmospheric moisture content variability from GPS-GLONASS data near the Kazan city), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 252–258.
  11. Danova T. E., Nikiforova M. P., Dynamic parameters of the troposphere at occurrence of hazardous weather phenomena in the Black Sea region, 22nd Intern. Symp. Atmospheric and Ocean Optics, Atmospheric Physics, Proc. SPIE, 2016, Vol. 10035, 100355Y, DOI: 10.1117/12.2248768.
  12. Efimov V. V., Yurovsky A. V., Formation of Vorticity of the Wind Speed Field in the Atmosphere over the Black Sea, Physical Oceanography, 2017, Vol. 6, pp. 3–11.
  13. Fantini M., Davolio S., Instability of Neutral Eady Waves and Orography, J. Atmospheric Sciences, 2001, Vol. 58, pp. 1146–1154.
  14. Lionello P., Dalan F., Elvini E., Cyclones in the Mediterranean region: The present and the doubled CO2 climate scenarios, J. Climate Research, 2002, Vol. 22, pp. 147–159.
  15. Speranza A., The Physical Mechanisms of Secondary Cyclogenesis, Recent Research Developments in Atmospheric Science, 2001, Vol. 1, pp. 57–68.
  16. Trigo I. F., Climatology and Interannual Variability of Storm-Tracks in the Euro-Atlantic Sector, a Comparison between ERA-40 and NCEP/NCAR Reanalysis, Climate Dynamics, 2006, Vol. 26, No. 2–3, pp. 127–143.
  17. Trigo I. F., Bigg G. R., Davies T. D., Climatology of cyclogenesis mechanisms in the Mediterranean, J. Monthly Weather Review, 2002, Vol. 130, pp. 549–569.
  18. Young A. H., Knapp K. R., Inamdar A., Hankins W., Rossow W. B., The International Satellite Cloud Climatology Project H-Series climate data record product, J. Earth System Science Data, 2018, Vol. 10, pp. 583–593.