ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 165-177

Identification of large-scale sea ice ridge areas in the Arctic using ASCAT data

E.V. Zabolotskikh 1 , K.S. Khvorostovsky 1 , E.A. Balashova 1 , A.I. Kostylev 1 , V.N. Kudryavtsev 1, 2 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
2 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 11.12.2019
DOI: 10.21046/2070-7401-2020-17-3-165-177
The study shows the possibility to detect sea ice ridge areas in the Arctic first year and young sea ice using measurements of the Advanced Scatterometer (ASCAT). The general mechanisms of sea ice scattering responsible for radar signal variations are considered. To increase the spatial resolution of the ASCAT measurements and bring the values of the normalized radar backscatter coefficient (NRSC) to a single observation angle, full resolution ASCAT data were used. The resulting daily averaged fields of the normalized NRSC with a resolution of 5×5 km were analyzed simultaneously with Sentinel-1 SAR images, sea ice concentration fields retrieved from the measurements of the Advanced Microwave Scanning Radiometer 2 and sea ice maps of the Arctic and Antarctic Research Institute. The effectiveness of ASCAT data usage for monitoring hummocks is demonstrated. A proposed approach allows using the ASCAT data for the study and operational monitoring of increased ridging areas with the spatial scales exceeding spatial resolution of scatterometer data, variability of which during the day can be neglected. Further development of the approach is associated with an analysis of collocated wind fields as well as the time sequence of the NRSC fields.
Keywords: Arctic, satellite scatterometers, ASCAT, sea ice, sea ice ridges
Full text

References:

  1. Bushuev A. V., Volkov N. A., Loshchilov V. S., Atlas ledovykh obrazovanii (Atlas of ice formations), Leningrad: Hydrometeoizdat, 1974, 140 p.
  2. Gukov A. Yu., Velikaya Sibirskaya polyn’ya (The Great Siberian polynya), Nauka i tekhnika Yakutii, 2009, Vol. 16, No. 1, pp. 1–5.
  3. Zabolotskikh E. V., Balashova E. A., Chapron B., Usovershenstvovannyi metod vosstanovleniya splochennosti morskogo l’da po dannym sputnikovykh mikrovolnovykh izmerenii vblizi 90 GHts (Advanced method for sea ice concentration retrieval from satellite microwave radiometer measurements at frequencies near 90 GHz), Sovremennye problemy distantsionnogo zondirovania Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 233–243.
  4. Kubyshkin N. V., Gudoshnikov Yu. P., Aktualizatsiya tekhnologii perevalki gruzov cherez pripai (Actualization of technologies for cargo transshipment via fast ice), Problemy Arktiki i Antarktiki, 2015, Vol. 105, No. 3, pp. 90–98.
  5. Mironov E. U., Porubaev V. S., Formirovanie gryad torosov v pribrezhnoi chasti Karskogo morya i ikh morfometricheskie kharakteristiki (The formation of ridges of hummocks in the coastal part of the Kara Sea and their morphometric characteristics), Sovremennye problemy nauki i obrazovaniya, 2012, No. 4, pp. 331–338.
  6. Murtazin A. F., Evgrafova K. G., Kudryavtsev V. N., Primenenie dannykh skatterometra ASCAT dlya issledovaniya ledovogo pokrova v Arktike (Application of ASCAT scatterometer data to study Arctic ice cover), Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2015, No. 40, pp. 160–173.
  7. Pavlov V. A., Kornishin K. A., Efimov Ya. O., Mironov E. U., Guzenko R. B., Kharitonov V. V., Osobennosti razvitiya konsolidirovannogo sloya gryad torosov v moryakh Karskom i Laptevykh (Features of the development of a consolidated layer of hummock ridges in the Kara and Laptev Seas), Neftyanoe khozyaistvo, 2016, No. 11, pp. 49–54.
  8. Smirnov V. G., Sputnikovye metody opredeleniya kharakteristik ledyanogo pokrova morei (Satellite methods for determining the characteristics of the sea ice cover), Saint Petersburg: AANII, 2011, 240 p.
  9. Smirnov V. G., Bushuev A. V., Zakhvatkina N. Yu., Loshchilov V. S., Sputnikovyi monitoring morskikh l’dov (Satellite monitoring of sea ice), Problemy Arktiki i Antarktiki, 2010, Vol. 85, No. 2, pp. 62–76.
  10. Sharonov A. Yu., Shmatkov V. A., Zadachi Gidrometeorologicheskogo obespecheniya kruglogodichnoi navigatsii v Vostochno-Sibirskom more (Tasks of hydrometeorological support for year-round navigation in the East Siberian Sea), Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala Makarova, 2018, Vol. 10, No. 1, pp. 170–182.
  11. Breivik L., Eastwood S., Lavergne T., Use of C-Band Scatterometer for Sea Ice Edge Identification, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 7, pp. 2669–2677.
  12. Dammann D. O., Eicken H., Mahoney A. R., Saiet E., Meyer F. J., John C., Traversing sea ice — linking surface roughness and ice trafficability through SAR polarimetry and interferometry, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2017, Vol. 11, No. 2, pp. 416–433.
  13. Dierking W., Sea Ice Monitoring by Synthetic Aperture Radar, Oceanology, 2013, Vol. 26, No. 2, DOI: 10.5670/oceanog.2013.33.
  14. Duncan K., Farrell S. L., Connor L. N., Richter-Menge J., Hutchings J. K., Dominguez R., High-resolution airborne observations of sea-ice pressure ridge sail height, Annals of Glaciology, 2018, Vol. 59, No. 76pt2, pp. 137–147.
  15. Ezraty R., Cavanié A., Intercomparison of backscatter maps over Arctic sea ice from NSCAT and the ERS scatterometer, J. Geophysical Research: Oceans, 1999, Vol. 104, No. C5, pp. 11471–11483.
  16. Hopkins M. A., Tuhkuri J., Lensu M., Rafting and ridging of thin ice sheets, J. Geophysical Research: Oceans, 1999, Vol. 104, No. C6, pp. 13605–13613.
  17. Koenig L., Martin S., Studinger M., Sonntag J., Polar airborne observations fill gap in satellite data, EOS: Trans. American Geophysical Union, 2010, Vol. 91, No. 38, pp. 333–334.
  18. Kwok R., Annual cycles of multiyear sea ice coverage of the Arctic Ocean: 1999–2003, J. Geophysical Research: Oceans, 2004, Vol. 109, No. C11, DOI: 10.1029/2003JC002238.
  19. Kwok R., Cunningham G. F., Yueh S., Area balance of the Arctic Ocean perennial ice zone: October 1996 to April 1997, J. Geophysical Research: Oceans, 1999, Vol. 104, No. C11, pp. 25747–25759.
  20. Microwave Remote Sensing of Sea Ice, Geophysical Monograph 68, Carsey F. D. (ed.), Washington D. C.: American Geophysical Union, 1992, 462 p.
  21. Otosaka I., Rivas M. B., Stoffelen A., Bayesian sea ice detection with the ERS scatterometer and sea ice backscatter model at C-band, IEEE Trans. Geoscience and Remote Sensing, 2017, Vol. 56, No. 4, pp. 2248–2254.
  22. Partington K. C., Flach J. D., Barber D., Isleifson D., Meadows P. J., Verlaan P., Dual-Polarization C-Band Radar Observations of Sea Ice in the Amundsen Gulf, IEEE Trans. Geoscience and Remote Sensing, 2010, Vol. 48, No. 6, pp. 2685–2691.
  23. Remund Q. P., Long D. G., A decade of QuikSCAT scatterometer sea ice extent data, IEEE Trans. Geoscience and Remote Sensing, 2013, Vol. 52, No. 7, pp. 4281–4290.
  24. Ressel R., Frost A., Lehner S., A Neural Network-Based Classification for Sea Ice Types on X-Band SAR Images, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2015, Vol. 8, No. 7, pp. 3672–3680.
  25. Rivas M. B., Stoffelen A., New Bayesian algorithm for sea ice detection with QuikSCAT, IEEE Trans. Geoscience and Remote Sensing, 2011, Vol. 49, No. 6, pp. 1894–1901.
  26. Rivas M. B., Verspeek J., Verhoef A., Stoffelen A., Bayesian sea ice detection with the advanced scatterometer ASCAT, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 7, pp. 2649–2657.
  27. Rivas M. B., Otosaka I., Stoffelen A., Verhoef A. A., A scatterometer record of sea ice extents and backscatter: 1992–2016, The Cryosphere, 2018, Vol. 12, No. 9, pp. 2941–2953.
  28. Shen H. H., Ackley S. F., Hopkins M. A., A conceptual model for pancake-ice formation in a wave field, Annals of Glaciology, 2001, Vol. 33, pp. 361–367.
  29. Smith M., Thomson J., Pancake sea ice kinematics and dynamics using shipboard stereo video, Annals of Glaciology, 2019, pp. 1–11, DOI: 10.1017/aog.2019.35.
  30. Swan A. M., Long D. G., Multiyear Arctic sea ice classification using QuikSCAT, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 9, pp. 3317–3326.
  31. Ulaby F. T., Moore R. K., Fung A. K., Microwave remote sensing: Active and passive, Volume 1: Microwave remote sensing fundamentals and radiometry, Reading: Addison-Wesley Publishing Co., 1981, 470 p.
  32. Verhoef A., Rivas M., Stoffelen A., ASCAT-A Arctic daily sea ice extent and backscatter maps, Version 1.0, Royal Netherlands Meteorological Institute (KNMI), 2018, DOI: 10.21944/ascat_a_nh_sea_ice_v1.0.
  33. Willmes S., Haas C., Nicolaus M., High radar-backscatter regions on Antarctic sea-ice and their relation to sea-ice and snow properties and meteorological conditions, Intern. J. Remote Sensing, 2011, Vol. 32, No. 14, pp. 3967–3984.