ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 31-40

Validation of daily Snow Depth FEWS NET product over River Ural basin on snow depth meteorological observations

A.G. Terekhov 1, 2 , N.I. Ivkina 2 , N.N. Abayev 2, 3 , A.G. Yeltay 3 , Z.M. Yegemberdyeva 1, 4 
1 Institute of Information and Computing Technology MES RK, Almaty, Kazakhstan
2 RSE Kazhydromet, Almaty, Kazakhstan
3 al-Farabi Kazakh National University, Almaty, Kazakhstan
4 Almaty University of Power Engineering and Telecommunications, Almaty, Kazakhstan
Accepted: 28.04.2020
DOI: 10.21046/2070-7401-2020-17-3-31-40
Snow depth is an important climatic characteristic of the Russian Federation. However, the Russian meteorological observational network is quite rare and instrumental measurements of snow depth over steppe and forest-steppe zones are often hampered by strong winds. This determines the interest in different estimates of snow cover parameters based on satellite data. Recently introduced for Central Asia, the product Snow Depth of the Famine Early Warning System Network (Snow Depth FEWS NET) with a resolution of 0.044×0.044° is updated daily, and the archive since 2000 covers part of the territory of Russia south of 56° N. The product documentation does not contain references to validation results for ground data in various parts of the coverage area. In the work, we tested the Snow Depth FEWS NET product for the River Ural basin. The validation used the meteorological data of 2005–2018 from five weather stations in the Russian part of the River Ural basin: Verkhneuralsk (WMO ID-28833), Magnitogorsk (WMO ID-28838), Kizilskoe (WMO ID-28939), Energetik (WMO ID-35038) and Orsk (WMO ID-35138). About 5,600 ground-based snow height measurements were compared with more than 2,000 daily Snow Depth FEWS NET maps. The Pearson correlation coefficient was 0.702 for separate daily values and 0.997 for multi-year average. But, the Snow Depth FEWS NET values were overestimated by about 28 % and had bias of (+4 cm) relative to meteorological observations. These discrepancies are insignificant and the Snow Depth FEWS NET product can be of interest for snow depth monitoring in the Russian part of the River Ural basin.
Keywords: snow cover height, meteorological observations, Snow Depth FEWS NET, River Ural basin, validation, linear regression
Full text

References:

  1. Verkhoturov A. L., Sokolova G. V., Bartalev S. A., Kramareva L. S., Issledovanie lesogidrologicheskikh protsessov na vodosborakh rek basseina Amura po dannym sputnikovykh i gidrometeorologicheskikh nablyudenii (Investigation of forest hydrological processes in watersheds of the Amur River basin according to satellite and hydrometeorological observations), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 142–154, DOI: 10.21046/2070-7401-2018-15-4-142-154.
  2. Ginzburg A. I., Kostianoy A. G., Tendentsii izmenenii gidrometeorologicheskikh parametrov Kaspiiskogo morya v sovremennyi period (1990-e – 2017 gg.) (Tendencies of changes in hydrometeorological parameters of the Caspian Sea in the modern period (1990s – 2017)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 7, pp. 195–207, DOI: 10.21046/2070-7401-2018-15-7-195-207.
  3. Zakharov A. I., Zakharova L. N., Nablyudeniya dinamiki snezhnogo pokrova na radarnykh interferogrammakh L-diapazona (Observation of snow cover dynamics on L-band SAR interferograms), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 7, pp. 190–197, DOI: 10.21046/2070-7401-2017-14-7-190-197.
  4. Kitaev L. M., Tikhonov V. V., Titkova T. B., Tochnost’ vosproizvedeniya po sputnikovym dannym anomal’nykh znachenii snegozapasov (The accuracy of snow water equivalent anomalies retrieval from satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 1, pp. 27–39, DOI: 10.21046/2070-7401-2017-14-1-27-39.
  5. Loupian E. A., Burtsev M. A., Krasheninnikova Yu. S., Zona rannego skhoda snezhnogo pokrova v Dmitrovskom raione Moskovskoi oblasti (Snow cover early melting zone in Dmitrov District of the Moscow Region), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 2, pp. 277–281, DOI: 10.21046/2070-7401-2018-15-2-277-281.
  6. Nastavlenie gidrometeorologicheskim stantsiyam i postam, Vyp. 3, Ch. 1, Meteorologicheskie nablyudeniya na stantsiyakh (Instructions for hydrometeorological stations and posts, Issue 3, Part 1, Meteorological observations at stations), Slabkovich G. I. (ed.), Leningrad: Gydrometeoizdat, 1985, 299 p.
  7. Terekhov A. G., Pak A. A., Sputnikovyi prognoz vliyaniya popolneniya Kapshagaiskogo vodokhranilishcha (KNR) na vodnost’ transgranichnoi reki Ile v 2019 godu (Influence of the Kapshagay reservoir (China) refill on transboundary River Ile runoff and satellite-based forecasting), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 298–302, DOI: 10.21046/2070-7401-2019-16-4-298-302.
  8. Terekhov A. G., Pak I. T., Dolgikh S. A., Dannye Landsat-5, -7, -8 i TsMR v zadache monitoringa gidrologicheskogo rezhima Kapshagaiskogo vodokhranilishcha na reke Tekes (kitaiskaya chast’ basseina reki Ile) (Hydrology monitoring of Kapchagay reservoir on river Tekes (China’s part of river Ile basin) based on Landsat-5, -7, -8 data and DEM batymetry), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 6, pp. 174–182.
  9. Terekhov A. G., Pak I. T., Dolgikh S. A., Sputnikovye nablyudeniya anomal’nogo vesennego pavodka 2016 goda v nizov’yakh reki Ayaguz (Satellite observations of the anomalous spring flood at the lower reach of the Ayaguz River in 2016), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 273–276, DOI: 10.21046/2070-7401-2016-13-4-273-276.
  10. Terekhov A. G., Abayev N. N., Yunicheva N. R. (2019a), Anomal’nyi rezhim snezhnosti 2019 goda i mnogoletnie trendy v izmeneniyakh vysoty snezhnogo pokrova Kazakhstana (Anomalous snowy regime at 2019 year and long-term trends in snow depth in Kazakhstan), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 351–355, DOI: 10.21046/2070-7401-2019-16-5-351-355.
  11. Terekhov A. G., Vitkovskaya I. S., Abayev N. N., Dolgikh S. A. (2019b), Mnogoletnie trendy v sostoyanii rastitel’nosti khrebtov Tyan’-Shanya i Dzhungarskogo Alatau po dannym eMODIS NDVI C6 (2002–2019) (Long term trends in vegetation in Tien-Shan and Dzungarian Alatau from eMODIS NDVI C6 (2002–2019)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 133–142, DOI: 10.21046/2070-7401-2019-16-6-133-142.
  12. Terekhov A. G., Abayev N. N., Lagutin E. I., Diagnostika vodoobespechennosti sel’skokhozyaistvennykh kul’tur SUAR KNR v techenie 2003–2019 gg. po dannym eMODIS NDVI C6 (Diagnostic of water availability of agricultural culture in Xinjiang during 2003–2019 years on base of eMODIS NDVI C6), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 62–72, DOI: 10.21046/2070-7401-2020-17-1-62-72.
  13. Titkova T. B., Izmenenie klimaticheskikh uslovii formirovaniya zimnego stoka v basseine Verkhnego Dona po sputnikovym i nazemnym dannym (Change in climatic conditions of winter runoff formation in the Upper Don basin revealed by satellite and ground data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 1, pp. 147–157, DOI: 10.21046/2070-7401-2019-16-1-147-157.
  14. Cherenkova E. A., Tendentsii zimnego uvlazhneniya territorii basseinov Severnoi Dviny i Pechory v XX – nachale XXI vv. po nazemnym i sputnikovym dannym (Trends of winter humidification of the Northern Dvina and Pechora basins in the 20th – early 21st centuries based on terrestrial and satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 285–292, DOI: 10.21046/2070-7401-2019-16-5-285-292.
  15. Chang A., Rango A., Algorithm Theoretical Basis Document for the AMSR-E Snow Water Equivalent Algorithm, Version 3.1, Greenbelt, MD, USA: NASA Goddard Space Flight Center, 2000, 124 p.
  16. Luojus K., Pulliainen J., Takala M., Lemmetyinen J., Derksen C., Wang L., Snow Water Equivalent (SWE) product guide, Version 1.0/0.1, ESA study contract report, ESRIN contract 21703/08/I-EC, Global snow monitoring for climate research, 15 Dec. 2010, 15 p.
  17. Muratova N., Terekhov A., Estimation of spring crops sowing calendar dates using MODIS in Northern Kazakhstan, Proc. Intern. Geoscience and Remote Sensing Symp. (IGARSS-2004), 2004, Vol. 6, pp. 4019–4020.
  18. Rescue of Sturgeon Species in the Ural River Basin, Lagutov V. (ed.), Dordrecht: Springer Science and Business Media, 2008, 333 p., DOI: 10.1007/978-1-4020-8924-4_10.
  19. Spivak L., Vitkovskaya I., Batyrbayeva M., Terekhov A., The experience of land cover change detection by satellite data, Frontiers of Earth Science, 2012, Vol. 6, Issue 2, pp. 140–146, DOI: 10.1007/s11707-012-0317-z.
  20. Sultangazin U., Muratova N., Doraiswamy P., Terekhov A., Estimation of weed infestation in spring crops using MODIS data, Proc. Intern. Geoscience and Remote Sensing Symp. (IGARSS-2003), 2003, Vol. 1, pp. 392–394.
  21. Tait A. B., Hall D. K., Foster J. L., Armstrong R. L., Utilizing multiple datasets for snow-cover mapping, Remote Sensing of Environment, 2000, No. 72, pp. 111–126, DOI: 10.1016/S0034-4257(99)00099-1.
  22. Terekhov A. G., Abayev N. N., Bolatov K., Egemberdieva Z. (2020a), Opportunities of short-term weather forecasts data in the environmental monitoring of the Kazakhstan, E3S Web Conf., 2020, Vol. 149, No. 03003, DOI: 10.1051/e3sconf/202014903003.
  23. Terekhov A. G., Vitkovskaya I. S., Abayev N. N. (2020b), The effect of changing stratification in the atmosphere in central zone of Eurasia according to vegetation data of Tien Shan mountains during 2002–2019, E3S Web Conf., 2020, Vol. 149, No. 03004, DOI: 10.1051/e3sconf/202014903004.
  24. Yang D., Goodison B. E., Metcalfe J. R., Golubev V. S., Elomaa E., Gunther T., Bates R., Pangburn T., Hanson C. L., Emerson D., Copaciu V., Milkovic J., Accuracy of Tretyakov precipitation gauge: Result of WMO intercomparison, Hydrological Processes, 1995, Vol. 9, Issue 8, pp. 877–895, DOI: 10.1002/hyp.3360090805.