ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 178-186

Dynamics of eddies in the Arctic Ocean from quasi-synchronous Sentinel-1 SAR observations

I.E. Kozlov 1 , E.V. Plotnikov 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 04.03.2020
DOI: 10.21046/2070-7401-2020-17-3-178-186
In this work, we demonstrate new possibilities for retrieval of horizontal surface current and eddy orbital velocities from quasi-synchronous spaceborne Sentinel-1A/B images over the Arctic Ocean. The novelty of the presented work is based on the availability of close-in-time SAR overpasses (up to 2–4 per day) at time intervals not exceeding 40–50 minutes, that became available after the launch of new polar-orbit Sentinel-1A/B satellites in 2014–2016. Based on the maximum cross-correlation method, a pair of Sentinel-1 SAR images over the Fram Strait marginal ice zone is used to calculate horizontal surface current velocity field that possess distinct signatures of eddies of different size and vorticity sign. An overall structure of surface current field agrees well with dynamic features seen in satellite data. Mean orbital velocities of observed eddies are found to be around 0.4–0.5 m/s, in good agreement with earlier field observations over this region. Presented methodology for the analysis of spaceborne SAR data may serve as a basis for investigation of both small- and large-scale dynamic processes in the upper Arctic Ocean over ice-free regions and in marginal ice zone.
Keywords: ocean eddies, orbital eddy velocities, spaceborne radar observations, Fram Strait, marginal ice zone, the Arctic Ocean
Full text

References:

  1. Afanasyev Y. D., Kostianoy A. G., Zatsepin A. G., Poulain P.-M., Analysis of velocity field in the eastern Black Sea from satellite data during the Black Sea’99 experiment, J. Geophysical Research: Oceans, 2002, Vol. 107, No. C8, pp. 1–7.
  2. Atadzhanova O. A., Zimin A. V., Romanenkov D. A., Kozlov I. E., Satellite radar observations of small eddies in the White, Barents and Kara Sea, Physical Oceanography, 2017, Vol. 2, pp. 75–83.
  3. Bourke R. H., Tunnicliffe M. D., Newton J. L., Paquette R. G., Manley T. O., Eddy near the Molloy Deep revisited, J. Geophysical Research: Oceans, 1987, Vol. 92, No. C7, pp. 6773–6776.
  4. Chen W., Nonlinear inverse model for velocity estimation from an image sequence, J. Geophysical Research: Oceans, 2011, Vol. 116, No. C6.
  5. Emery W. J., Thomas A. C., Collins M. J., Crawford W. R., Mackas D. L., An objective method for computing advective surface velocities from sequential infrared satellite images, J. Geophysical. Research: Oceans, 1986, Vol. 91, No. C11, pp. 12865–12878.
  6. Iakovlev N. G., Arctic Ocean Modeling: The Consistent Physics on the Path to the High Spatial Resolution, The Ocean in Motion, Cham: Springer, 2018, pp. 559–567.
  7. Ivanov V. V., Alexeev V. A., Repina I., Koldunov N. V., Smirnov A., Tracing Atlantic Water signature in the Arctic sea ice cover east of Svalbard, Advances in Meteorology, 2012, Vol. 2012(201818).
  8. Johannessen J. A., Johannessen O. M., Svendsen E., Shuchman R., Manley T., Campbell W. J., Josberger E. G., Sandven S., Gascard J. C., Olaussen T., Davidson K., Van Leer J., Mesoscale eddies in the Fram Strait marginal ice zone during the 1983 and 1984 Marginal Ice Zone Experiments, J. Geophysical Research: Oceans, 1987, Vol. 92, No. C7, pp. 6754–6772.
  9. Johannessen J. A., Kudryavtsev V., Akimov D., Eldevik T., Winther N., Chapron B., On radar imaging of current features: 2. Mesoscale eddy and current front detection, J. Geophysical Research: Oceans, 2005, Vol. 110, No. C7.
  10. Karimova S. S., Spiral eddies in the Baltic, Black and Caspian seas as seen by satellite radar data, Advances in Space Research, 2012, Vol. 50, No. 8, pp. 1107–1124.
  11. Korotaev G. K., Huot E., Le Dimet F. X., Herlin I., Stanichny S. V., Solovyev D. M., Wu L., Retrieving ocean surface current by 4-D variational assimilation of sea surface temperature images, Remote Sensing of Environment, 2008, Vol. 112, No. 4, pp. 1464–1475.
  12. Kozlov I. E., Kudryavtsev V. N., Johannessen J. A., Chapron B., Dailidiene I., Myasoedov A. G., ASAR imaging for coastal upwelling in the Baltic Sea, Advances in Space Research, 2012, Vol. 50, pp. 1125–1137.
  13. Kozlov I., Kudryavtsev V., Zubkova E., Atadzhanova O., Zimin A., Romanenkov D., Myasoedov A., Chapron B., SAR observations of internal waves in the Russian Arctic seas, Proc. IGARSS, Milan, 2015, pp. 947–949.
  14. Kozlov I. E., Zubkova E. V., Kudryavtsev V. N., Internal solitary waves in the Laptev Sea: first results of spaceborne SAR observations, IEEE Geoscience and Remote Sensing Letters, 2017, Vol. 14, No. 11, pp. 2047–2051.
  15. Kozlov I. E., Artamonova A. V., Manucharyan G. E., Kubryakov A. A., Eddies in the Western Arctic Ocean from spaceborne SAR observations over open ocean and marginal ice zones, J. Geophysical Research: Oceans, 2019, Issue 124, No. 9, pp. 6601–6616.
  16. Kudryavtsev V. N., Kozlov I. E., Chapron B., Johannessen J. A., Quad-polarization SAR features of ocean currents, J. Geophysical Research: Oceans, 2014, Vol. 119, No. 9, pp. 6046–6065.
  17. Lavrova O., Mityagina M., Satellite Survey of internal waves in the Black and Caspian Seas, Remote Sensing, 2017, Vol. 9, 892 p.
  18. Lim J. S., Two-dimensional Signal and Image Processing, New Jersey: Prentice Hall, 1990, 710 p.
  19. Mensa J. A., Timmermans M.-L., Kozlov I. E., Williams W. J., Özgökmen T., Surface drifter observations from the Arctic Ocean’s Beaufort Sea: evidence for submesoscale dynamics, J. Geophysical Research: Oceans, 2018, Vol. 123, No. 4, pp. 2635–2645.
  20. Miranda N., Meadows P. J., Radiometric Calibration of S-1 Level-1 Products Generated by the S-1 IPF, Technical Note ESA-EOPG-CSCOP-TN-0002, European Space Agency, 2015, 13 p.
  21. Mityagina M. I., Lavrova O. Y., Karimova S. S., Multi-sensor survey of seasonal variability in coastal eddy and internal wave signatures in the north-eastern Black Sea, Intern. J. Remote Sensing, 2010, Vol. 31, No. 17–18, pp. 4779–4790.
  22. Morozov E. G., Kozlov I. E., Shchuka S. A., Frey D. I., Internal tide in the Kara Gates Strait, Oceanology, 2017, Vol. 57, No. 1, pp. 8–18.
  23. Qazi W. A., Emery W. J., Fox-Kemper B., Computing ocean surface currents over the coastal California current system using 30-min-lag sequential SAR images, IEEE Trans. Geoscience and Remote Sensing, 2014, Vol. 52, pp. 7559–7580.
  24. Smith D. C., Morison J. H., Johannessen J. A., Untersteiner N., Topographic generation of an eddy at the edge of the East Greenland Current, J. Geophysical Research: Oceans, 1984, Vol. 89, No. C5, pp. 8205–8208.
  25. Von Appen W. J., Wekerle C., Hehemann L., Schourup-Kristensen V., Konrad C., Iversen M. H., Observations of a submesoscale cyclonic filament in the marginal ice zone, Geophysical Research Letters, 2018, Vol. 45, No. 12, pp. 6141–6149.
  26. Wadhams P., Squire V. A., An ice–water vortex at the edge of the East Greenland Current, J. Geophysical Research, 1983, Vol. 88, No. C5, pp. 2770–2780.
  27. Zimin A. V., Kozlov I. E., Atadzhanova O. A., Chapron B., Monitoring short-period internal waves in the White Sea, Izvestia, Atmospheric and Oceanic Physics, 2016, Vol. 52, No. 9, pp. 951–960.