ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 223-230

Lidar sounding of aerosol pollution in atmosphere along the route Saint Petersburg – Voronezh Region – Belgorod Region

D.A. Samulenkov 1 , M.V. Sapunov 1 , I.N. Melnikova 2, 3 
1 Saint Petersburg State University, Saint Petersburg, Russia
2 - , Saint Petersburg, Russia
3 Russian State Hydrometeorological University, St. Petersburg, Russia
Accepted: 02.04.2020
DOI: 10.21046/2070-7401-2020-17-3-223-230
The paper presents the results of measurements performed by a mobile and stationary lidar complex from May 17 to 20, 2019. Based on the measurement results, the parameters of aerosol pollution were compared in different regions of Russia: Belgorod Region, Voronezh Region, Saint Petersburg. To monitor the meteorological situation, measurements of the wind speed and direction by Doppler lidar were made before measurements with an aerosol lidar. The coefficients of backscattering and attenuation of the lidar signal were compared to determine the upper boundary of the dust cloud in different regions, the optical data were processed to calculate the aerosol microphysical parameters, the values of the numerical and volume concentrations of aerosol particles were given, and the average radius of aerosol particles was calculated. It was noted that the highest density of the aerosol cap, with a particle concentration of about 4500 1/cm3, was noted over Saint Petersburg, in the surface layer at an altitude of 300 m. The concentration of particles gradually decreased with increasing height. The minimum concentration of aerosol particles was observed in Voronezh Region with a concentration of 2000 1/cm3 at an altitude of 300 m, remained the same to an altitude of 1200 m, and then sharply decreased. In Belgorod Region, differences in the concentration of aerosol particles were characteristic of the surface layer: at a height of 300 m at point Belgorod 1 the concentration was 1800 1/cm3, at point Belgorod 2 it was approximately two times higher — 3500 1/cm3. In both cases, there was an increase in concentration of aerosol particles at an altitude of 1400 m, point Belgorod 1 — 2900 1/cm3, point Belgorod 2 — 4000 1/cm3. That, apparently, was associated with the transfer from the south-west, where agricultural areas are located in large numbers. When calculating the diameter of aerosol particles, particles with an average radius of 0.1 μm prevailed at all measurement points.
Keywords: lidar, atmospheric pollution, aerosol
Full text

References:

  1. Veselovskii I. A., Distantsionnaya lazernaya diagnostika aerozol’nykh i gazovykh sostavlyayushchikh atmosfery metodami romanovskogo i uprugogo rasseyaniya: Diss. dokt. fiz.-mat. nauk (Remote laser diagnostics of aerosol and gas constituents of the atmosphere by Roman and elastic scattering methods, Dr. phys. math. sci. thesis), Moscow, 2005, 391 p.
  2. Ginzburg A. S., Melnikova I. N., Novikov S. S., Frolkis V. A., Prostaya radiatsionnaya model’ bezoblachnoi i oblachnoi atmosfery (Spatial radiation model of clear sky and cloudy atmosphere), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 1, pp. 226–244, available at: https://doi.org/10.21046/2070-7401-2017-14-1-226-244.
  3. Donchenko V. K., Samulenkov D. A., Melnikova I. N., Boreisho A. S., Chugreyev A. V., Lazernye sistemy Resursnogo Tsentra SPbGU. Vozmozhnosti, postanovka zadach i pervye rezul’taty (Laser systems of the SPSU Resource Center. Potentials, problem definitions, and first results), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 122–132.
  4. Kolgotin A. V., Metodika resheniya zadach mnogovolnovogo lidarnogo zondirovaniya v primenenii k global’nomu monitoringu parametrov atmosfernykh aerozolei: Diss. dokt. fiz.-mat. nauk (A technique for solving the problems of multi-wavelength sensing leadership as applied to global monitoring of atmospheric aerosol parameters: dissertation, Dr. phys. math. sci. thesis), Saint Petersburg, 2014, 211 p.
  5. Melnikova I. N., Donchenko V. K., Samulenkov D. A., Sapunov M. V., Boreisho A. S., Vasil’ev D. N., Konyaev M. A., Chugreev A. V., Dvinyanina O. V., Milyaev V. B., Korolenko L. I., Tsibulskii V. V., Novye vozmozhnosti monitoringa atmosfernykh zagryaznenii v Severo-Zapadnom regione RF (New opportunities for monitoring atmospheric pollution in the North-West region of the Russian Federation), Innovatsii, 2014, No. 11, pp. 2–7.
  6. Samulenkov D. A., Melnikova I. N., Donchenko V. K., Sapunov M. V., Issledovanie zagryaznenii atmosfery s pomoshch’yu lidarnogo monitoringa (The study of atmospheric pollution using lidar monitoring), Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2017, No. 48, pp. 266–280.
  7. Brook R. D., Shin H. H., Bard R. L., Burnett R. T., Vette A., Croghan C., Thornburg J., Rodes C., Williams R., Exploration of the Rapid Effects of Personal Fine Particulate Matter Exposure on Arterial Hemodynamics and Vascular Function during the Same Day, Environmental Health Perspectives, 2011, Vol. 119, No. 5, pp. 432–444, available at: https://doi.org/10.1289/ehp.1002107.
  8. Bunkin A. F., Pershin S. M., Lidar measurement of dynamics of spatial characteristics of aerosol in boundary atmospheric layer under urban conditions, Physics of Wave Phenomena, 2005, Vol. 13, No. 1, pp. 37–43.
  9. Bunkin A. F., Voliak K. I., Laser Remote Sensing of the Ocean: Methods and Applications, New York; Chichester; Weinheim; Brisbane; Singapore; Toronto: John Wiley and Sons, 2001, 244 p.
  10. Fischer P. H., Marra M., Ameling C. B., Gerard H., Beelen R., de Hoogh K., Breugelmans O., Kruize H., Janssen N. A. H., Houthuijs D., Environmental Health Perspective Air Pollution and Mortality in Seven Million Adults: The Dutch Environmental Longitudinal Study (DUELS), Environmental Health Perspectives, 2015, Vol. 123, No. 7, pp. 697–704, available at: https://doi.org/10.1289/ehp.1408254.
  11. Goers U. B., Laser remote sensing of sulfur dioxide and ozone with the mobile differential absorption lidar ARGOS, Optical Engineering, 1995, Vol. 34, No. 11, pp. 3097–3102, available at: https://doi.org/10.1117/12.213584.
  12. Immler F., Beninga I., Ruhe W., Stein B., Mielke B., Rutz S., Terli Ö., Schrems O., A new LIDAR system for the detection of Cloud and aerosol backscatter, depolarization, extinction, and fluorescence, Proc. 23rd Intern. Laser Radar Conf. (ILRC 2006), 2006, pp. 35–38.
  13. Ismail S., Browell E. V., Lidar: Differential Absorption Lidar, Encyclopedia of Atmospheric Sciences (Second Edition), 2015, Vol. 3, pp. 277–288.
  14. Mallone S., Stafoggia M., Faustini A., Gobbi G. P., Marconi A., Forastiere F., Saharan Dust and Associations between Particulate Matter and Daily Mortality in Rome, Italy, Environmental Health Perspectives, 2011, Vol. 119, No. 10, pp. 875–888, available at: https://doi.org/10.1097/01.ede.0000362907.77717.07.
  15. Measures R. M., Laser Remote Sensing, Fundamentals and Applications, New York; Toronto; Singapore: John Wiley and Sons, 1985, 524 p.
  16. Pershin S., Lyash A., Makarov V., Atmosphere remote sensing by microjoule pulses of diode-laser, Physics of Vibration, 2001, Vol. 9, No. 4, pp. 256–260.