ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 192-198

Physical limitations of bathymetry measurement accuracy from optical images of the sea surface

A.S. Zapevalov 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 18.03.2020
DOI: 10.21046/2070-7401-2020-17-2-192-198
The physical limitations of the method of estimating sea depth from a pair of optical satellite images of the sea surface obtained with a time shift that is less than the period of the observed waves are considered. The method is based on the dependence of the phase velocity of surface waves on sea depth. It is shown that estimates of phase velocities in the coastal zone can be distorted as a result of reflection from the bottom slope and underwater obstacles. In cross-spectral analysis of two images, the reflected waves change the phase spectrum and, as a result, the calculated values of the phase velocities change. Depending on the amount of time shift between images, the reflected waves can lead to both an increase and a decrease in the calculated values of the phase velocities. The greatest errors in determining the phase velocity are observed in a situation when a wave travels a distance of less than 0.2 of its length over an interval equal to a time shift between images. In the presence of reflected waves, deviations of the phase velocity values calculated from optical images from theoretical values lead to the fact that different depths can correspond to the same phase velocity value.
Keywords: bathymetry, optical satellite images, cross-spectral analysis, reflection of sea waves, dispersion ratio
Full text

References:

  1. Didenkulova I. I., Pelinovsky E. N., Reflection of a long wave from an underwater slope, Oceanology, 2011, V. 51, No. 4, pp. 568–573.
  2. Lighthill J., Waves in Fluids, Cambridge: Cambridge University Press, 1979, 504 p.
  3. Pokazeev K. V., Zapevalov A. S., Calculation of phase velocities in the field of sea surface waves, Moscow University Physics Bulletin, 2019, V. 74, No. 4, pp. 413–418.
  4. Saprykina Y. V., Kuznetsov S. Y., Kovalenko A. N., Experimental studies of the local reflection of long waves from an underwater slope, Oceanology, 2015, V. 55, No. 2, pp. 171–181.
  5. Phillips O. M., The Dynamics of the Upper Ocean, Cambridge University Press, 1977, 336 p.
  6. Yurovskaya M. V., Kudryavtsev V. N., Stanichny S. V., Vosstanovlenie kinematicheskikh kharakteristik poverkhnostnogo volneniya i batimetrii po mnogokanal’nym opticheskim snimkam kompleksa “Geoton-L1” na sputnike “Resurs-P” (Reconstruction of surface wave kinematic characteristics and bathymetry from Geoton-L1 multichannel optical images from “Resurs-P” satellite), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 218–226.
  7. Ardhuin F., Roland A., Coastal wave reflection, directional spread, and seismoacoustic noise sources, J. Geophysical Research, 2012, Vol. 117, C00J20, 16 p.
  8. Dudis J. J., Interpretation of phase velocity measurements of wind-generated surface waves, J. Fluid Mechanics, 1981, Vol. 113, pp. 241–249.
  9. Dugan J. J., Piotrowski C. C., Surface currents measured from a sequence of airborne camera images, 7th Working Conf. Current Measurement Technology, Proc. IEEE/OES, 2003, pp. 60–65, DOI: 10.1109/ccm.2003.1194284.
  10. Dugan J. P., Piotrowski C. C., Williams J. Z., Water depth and surface current retrievals from airborne optical measurements of surface gravity wave dispersion, J. Geophysical Research, 2001, Vol. 106, No. C8, pp. 16903–16915.
  11. Dykman V. Z., Efremov O. I., Volikov M. S., Normal-to-coast transfer of coarse suspension in a surf area: modeling and assessments based on the measurements by the instrumental complex “Donnaya stantsiya”, Physical Oceanography, 2017, No. 4, pp. 66–78.
  12. Kudryavtsev V., Yurovskaya M., Chapron B., Collard F., Donlon C. (2017a), Sun glitter imagery of ocean surface waves: Part 1. Directional spectrum retrieval and validation, J. Geophysical Research: Oceans, 2017, Vol. 122, No. 2, pp. 1369–1383.
  13. Kudryavtsev V., Yurovskaya M., Chapron B., Collard F., Donlon C. (2017b), Sun glitter imagery of surface waves. Part 2: Waves transformation on ocean currents, J. Geophysical Research: Oceans, 2017, Vol. 122, No. 2, pp. 1384–1399.
  14. Longuet-Higgins M. S., A theory of the origin of microseisms, Philosophical Transactions, Series A, 1950, Vol. 243, pp. 1–35.
  15. Young I. R., Rosenthal W., Ziemer F., A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents, J. Geophysical Research, 1985, Vol. 90, No. C1, pp. 1049–1059.
  16. Yurovskaya M., Kudryavtsev V., Chapron B., Rascle N., Collard F., Wave Spectrum and Surface Current Retrieval from Airborne and Satellite Sunglitter Imagery, Proc. IGARSS’2018, Valencia, 2018, pp. 3192–3195, DOI: 10.1109/IGARSS.2018.8518459.