Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 199-205
Using satellite MSI data (Sentinel-2) to estimate the concentration of chlorophyll a in the Novosibirsk Reservoir
1 Siberian Center of State Research Center for Space Hydrometeorology “Planeta”, Novosibirsk, Russia
Accepted: 19.03.2020
DOI: 10.21046/2070-7401-2020-17-2-199-205
The paper investigates the possibility of using the data of the MSI instrument (Sentinel-2) for mapping the concentration of chlorophyll a in the surface layer of internal freshwater bodies using the example of the Novosibirsk Reservoir. The concentration calculation was carried out with the SNAP software using standard neural network algorithms C2RCC and C2X. The obtained values were compared with field data. An analysis of the results showed good agreement between the in situ data and the calculated chlorophyll a concentrations only for the C2X algorithm: the correlation coefficient is 0.77, and the root mean square error is 2.87 mg/m3. The nature of the distribution of chlorophyll a in the surface layer of the reservoir is also consistent with the findings of previous studies that the concentration of chlorophyll a has a very wide range of values (from units to hundreds of mg/m3). On the map of the distribution of chlorophyll a, obtained from satellite data, zones with extremely high concentrations are clearly distinguished: the Berdskiy Bay and Strait, blocked by a dam, in the area of the Chingis village. High concentrations of chlorophyll a in the Berdskiy Bay are confirmed by field data. In the upper part of the Reservoir near the Chingis village, expeditionary measurements were not performed. MSI satellite data can serve as the basis for planning ground-based expeditions, since they allow obtaining maps of the characteristics of the entire water body and identifying zones with the maximum concentration of chlorophyll a.
Keywords: chlorophyll a, MSI, Sentinel-2, eutrophication, reservoir, water, pond
Full textReferences:
- Bukanova T. V., Tendentsii evtrofirovaniya yugo-vostochnoi chasti Baltiiskogo morya po sputnikovym dannym: Diss. kand. geogr. nauk (Satellite eutrophication trends in the southeastern Baltic Sea. Cand. geogr. sci. thesis), Kaliningrad, 2014, 142 p.
- Ermolaeva N. I., Dvurechenskaya S. Ya., Izuchenie kachestva vody na otdel’nykh uchastkakh novosibirskogo vodokhranilishcha s povyshennoi ekologicheskoi napryazhennost’yu (na primere Berdskogo zaliva) (The study of water quality in certain sections of the Novosibirsk reservoir with increased environmental stress (for example, Berdskiy Bay)), Sostoyanie i problemy ekologicheskoi bezopasnosti Novosibirskogo vodokhranilishcha (State and Problems of Environmental Safety of the Novosibirsk Reservoir), Book of Abstracts, Novosibirsk, 2012, pp. 25–26.
- Savkin V. M., Dvurechenskaya S. Ya., Ermolaeva N. I., Kipriyanova L. M., Kirillov V. V., Romanov R. E., Popov P. A., Shlychkov V. A., Yanygina L. V., Atavin A. A., Bulycheva T. M., Vize A. M., Gorgulenko V. V., Grankina T. B., D’yachenko A. V., Zherdeva T. V., Zarubina E. Yu., Kim G. V., Kovalevskaya N. M., Koveshnikov M. I., Kondakova O. V., Kotovshchikov A. V., Krylova E. N., Larikova N. V., Ovchinnikova T. E., Rybkina I. D., Semchukov A. N., Sokolov M. I., Stoyashcheva N. V., Fedorova E. A., Khabidov A. Sh., Eirikh A. N., Mnogoletnyaya dinamika vodno-ekologicheskogo rezhima Novosibirskogo vodokhranilishcha (Long-term dynamics of the water-ecological regime of the Novosibirsk reservoir), Novosibirsk: Izd. SO RAN, 2014, 383 p.
- Sutorikhin I. A., Litvinenko S. A., Spektral’naya prozrachnost’ Novosibirskogo vodokhranilishcha v letnii period 2017 g. (Spectral transparency of the Novosibirsk reservoir in the summer of 2017), Estestvennye i tekhnicheskie nauki, 2017, No. 12, pp. 175–177.
- Ansper A., Alikas K., Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes, Remote Sensing, 2019, Vol. 11, Issue 1, p. 64.
- Brockmann C., Doerffer R., Peters M., Stelzer K., Embacher S., Ruescas A., Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters, Proc. Living Planet Symp., 2016, ESA-SP, Vol. 740, p. 54.
- Ogashawara I., Mishra D. R., Gitelson A. A., Remote sensing of inland waters, In: Bio-optical modeling and remote sensing of inland waters, Amsterdam: Elsevier, 2017, pp. 3–5.
- O’Reilly J. E., Werdell P. J., Chlorophyll algorithms for ocean color sensors — OC4, OC5 & OC6, Remote Sensing of Environment, 2019, Vol. 229, pp. 32–47.