ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 252-264

Global microwave snow water equivalent data: comparison with ground observations and inverse correlation with winter-spring air temperature (case study: Neva-Ladoga basin)

M.V. Georgievsky 1 , S.V. Romanov 2 , T.V. Parshina 1 , V.L. Trushevsky 1 
1 St. Petersburg State University, Saint Petersburg, Russia
2 LLC "Lenvodproekt", St. Petersburg, Russia
Accepted: 17.02.2020
DOI: 10.21046/2070-7401-2020-17-2-252-264
The paper describes the quality assessment of information provided by global microwave snow water equivalent data. The investigation area is the Neva-Ladoga basin where snow plays an important role in the formation of spring runoff. Two global data archives: Global Monthly EASE-Grid Snow Water Equivalent Climatology and AMSR-E/Aqua Monthly L3 Global Snow Water Equivalent EASE-Grids were analyzed as initial information. At the first stage of the study, the intercomparison of satellite data on snow water equivalent (SWE) was carried out as well as an assessment of their accuracy by comparing with ground-based observations. It was found that the archival data are in good agreement with each other, but significantly underestimate the SWE in comparison with the snow surveys data. At the second stage of the research, the relationship between the long-term fluctuations in the maximum SWE values obtained from the microwave data and winter-spring air temperature over the investigation basin was analyzed. The obtained results demonstrate that the microwave data (maximum SWE) have an inverse relationship with the air temperature changes during snow cover accumulation and melting periods (January – April). The correlation coefficient is –0.80 for the 33-year period. The article also provides an overview of existing global microwave snow water equivalent databases.
Keywords: satellite microwave radiometry, snow water equivalent, maximum snow water equivalent, snow survey, comparative analysis, climate change, Neva-Ladoga basin
Full text

References:

  1. Berezin K. Yu., Dmitriev A. V., Dmitriev V. V., Otsenka vlagozapasa snezhnogo pokrova po dannym sputnikovoi radiometrii dlya stepnoi zony Zapadnoi Sibiri (Assessment of snow water equivalent based on satellite radiometry data for the steppe zone of Western Siberia), Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo instituta imeni akademika M. F. Reshetneva, 2013, Vol. 5(51), pp. 9–12.
  2. Bulygina O. N., Razuvaev V. N., Aleksandrova T. M., Opisanie massiva dannykh “Marshrutnye snegomernye sʺemki” (Description of the dataset “Route snow surveys”), available at: http://meteo.ru/data/166-snow-surveys (accessed 15.11.2019).
  3. Gosudarstvennyi vodnyi kadastr. Mnogoletnie dannye o rezhime i resursakh poverkhnostnykh vod sushi. T. 1. RSFSR (State Water Cadastre. Long-term data on the regime and resources of land surface water. Vol. 1. RSFSR), Issue 5, Leningrad: Gidrometeoizdat, 1986.
  4. Doklad ob osobennostyakh klimata na territorii Rossiiskoi Federatsii za 2018 god (2018 climate report on the territory of the Russian Federation), Moscow: Rosgidromet, 2019, 79 p.
  5. Lvovich M. I., Mirovye vodnye resursy i ikh budushchee (World water resources and their future), Moscow: Mysl’, 1974, 448 p.
  6. Nezhikhovskii R. A., Reka Neva i Nevskaya guba (Neva River and Neva Bay), Leningrad: Gidrometeoizdat, 1981, 112 p.
  7. Sokolov A. A., Gidrografiya SSSR (Hydrography of the USSR), Leningrad: Gidrometeoizdat, 1964, 536 p.
  8. Turkov D. V., Sokratov V. S., Titkova T. B., Opredelenie snegozapasov Zapadnoi Sibiri po raschetam na modeli lokal’nogo teplovlagoobmena SPONSOR s ispol’zovaniem dannykh reanaliza (Determination of snow water equivalent in Western Siberia by application of the model of local heat and moisture exchange SPONSOR using reanalysis data), Led i Sneg, 2017, Vol. 57, No. 3, pp. 343–354, DOI: 10.15356/2076-6734-2017-3-343-354.
  9. Armstrong R., Brodzik M. J., Knowles K., Savoie M., Global Monthly EASE-Grid Snow Water Equivalent Climatology, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA, 2005, available at: https://doi.org/10.5067/KJVERY3MIBPS (accessed 15.11.2019).
  10. Chang A. T. C., Rango A., Algorithm Theoretical Basis Document (ATBD) for the AMSR-E Snow Water Equivalent Algorithm, Version 3.1, NASA Goddard Space Flight Center, 2000, 49 p., available at: http://nsidc.org/data/amsre/pdfs/amsr_atbd_snow.pdf.
  11. Chang A. T. C., Foster J. L., Hall D. K., Nimbus-7 Derived Global Snow Cover Parameters, Annals of Glaciology, 1987, Vol. 9, pp. 39–44.
  12. Chang A. T. C., Foster J. L., Hall D. K., Goodison B. E., Walker A. E., Metcalfe J. R., Snow Parameters Derived from Microwave Measurements During the BOREAS Winter Field Experiment, J. Geophysical Research, 1997, Vol. 102, Issue D24, pp. 29663–29671.
  13. Harris I. D., Jones P. D., Osborn T. J., Lister D. H., Updated high-resolution grids of monthly climatic observations ― the CRU TS3.10 Dataset, Intern. J. Climatology, 2014, Vol. 34, pp. 623–642, DOI: 10.1002/joc.3711.
  14. Kelly R. E. J., Foster J. L., Hall D. K. (2005a), The AMSR-E Snow Water Equivalent Product: Status and Future Development, American Geophysical Union Fall Meeting, San Francisco, California, 5–9 Dec., Abstract C21C-1134, 2005.
  15. Kelly R. E. J., Foster J. L., Hall D. K. (2005b), The AMSR-E Snow Water Equivalent Product: Algorithm Development and Progress in Product Validation, Proc. 28th General Assembly of the Union of Intern. Radio Science, New Delhi, India, 23–29 Oct. 2005.
  16. Krenke A., Former Soviet Union Hydrological Snow Surveys, 1966–1996, Version 1, National Snow and Ice Data Center, Boulder, Colorado, USA, 1998 (updated 2004), available at: https://doi.org/10.7265/N58C9T60 (accessed 15.11.2019).
  17. Platnick S., Editor’s Corner, The Earth Observer, May – June 2014, Vol. 26, Issue 3, pp. 2–3, available at: https://eospso.nasa.gov/sites/default/files/eo_pdfs/May-Jun%202014_final_color508.pdf (accessed 15.11.2019).
  18. Singh P., Singh V. P., Snow and Glacier Hydrology, Springer, 2001, 756 p.
  19. Takala M., Luojus K., Pulliainen J., Derksen C., Lemmetyinen J., Kärnä J., Koskinen J., Bojkov B., Estimating Northern Hemisphere Snow Water Equivalent for Climate Research through Assimilation of Space-Borne Radiometer Data and Ground-Based Measurements, Remote Sensing of Environment, 2011, Vol. 115, pp. 3517–3529, DOI: https://doi.org/10.1016/j.rse. 2011.08.014.
  20. Tedesco M., Kelly R., Foster J. L., Chang A. T., AMSR-E/Aqua Monthly L3 Global Snow Water Equivalent EASE-Grids, Version 2, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA, 2004, available at: https://doi.org/10.5067/AMSR-E/AE_MOSNO.002 (accessed 15.11.2019).