ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 30-39

Evaluation of the SREM atmospheric correction algorithm applicability to time series analysis using Landsat data example and its open source software implementation

E.E. Kazakov 1 , Yu.I. Borisova 1, 2 
1 State Hydrological Institute, Saint Petersburg, Russia
2 Saint Petersburg State University, Saint Petersburg, Russia
Accepted: 11.03.2020
DOI: 10.21046/2070-7401-2020-17-2-30-39
The problem of Earth remote sensing data atmospheric correction remains one of the most uncertain, but at the same time acute, especially for processing and interpretation of different-time data. The provision of terrestrial atmospheric data for most of the planet is still unsatisfactory, and the qualitative configuration of atmospheric correction models involving assimilation of atmospheric data is often very difficult, especially for non-specialists. The SREM atmospheric correction algorithm, proposed by an international team of scientists in 2019, does not require additional atmospheric data other than those already contained in the metadata of a satellite image. Authors show a high level of correction quality. In this paper, we offer a description of the SREM algorithm in Russian, an additional assessment of the quality of the SREM algorithm for Landsat data based on a comparison of correction results with the results of several common methods (authoritative LaSRC algorithm, popular DOS algorithm, raw non-corrected reflectance data) for the annual time series, as well as an open software implementation of SREM in Python, available for public use, which, we hope, will help to attract the attention of the professional community to the original algorithm. Additional quality assessment shows satisfactory performance for some spectral ranges (0.53–0.88 microns) and index images (e.g. NDVI), and unsatisfactory for others (<0.53 µm, >0.88 µm, index images based on them, e.g. NDWI, NDBI).
Keywords: Landsat, atmospheric correction, SREM, LaSRC, DOS, time-series, surface reflectance, NDVI, NDBI, NDWI
Full text

References:

  1. Lysenko S. A., Atmosfernaya korrektsiya mnogospektral’nykh sputnikovykh snimkov na osnove approksimatsionnoi modeli perenosa solnechnogo izlucheniya (Atmospheric correction of multispectral satellite images based on the approximate model of the solar radiation transfer), Optika atmosfery i okeana, 2017, Vol. 30, No. 9, pp. 775–788.
  2. Tarasenkov M. V., Belov V. V., Algoritm atmosfernoi korrektsii sputnikovykh izobrazhenii neodnorodnoi zemnoi poverkhnosti v vidimom i UF-diapazonakh dlin voln (Atmospheric correction algorithm for satellite images of nonuniform Earth’s surface in the visible and UV ranges), Vychislitel’nye tekhnologii, 2014, Vol. 19, No. 3, pp. 48–56.
  3. Tarasenkov M.V, Zimovaya A. V., Belov V. V., Engel M. V., Vosstanovlenie koeffitsientov otrazheniya zemnoi poverkhnosti po sputnikovym izmereniyam MODIS s uchetom polyarizatsii izlucheniya (Reconstruction of the Earth surface reflection coefficients from MODIS satellite measurements with allowance for radiation polarization), Optika atmosfery i okeana, 2019, Vol. 32, No. 8, pp. 641–649.
  4. Bilal M., Nazeer M., Nichol J. E., Bleiweiss M. P., Qiu Z., Jäkel E., Campbell J. R., Atique L., Huang X., Lolli S., A Simplified and Robust Surface Reflectance Estimation Method (SREM) for Use over Diverse Land Surfaces Using Multi-Sensor Data, Remote Sensing, 2019, Vol. 11, No. 11, p. 1344.
  5. Chavez Jr. P. S., An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data, Remote Sensing of Environment, 1988, Vol. 24, No. 3, pp. 459–479.
  6. Chavez Jr. P. S., Image-based atmospheric corrections — revisited and improved, Photogrammetric Engineering and Remote Sensing, 1996, Vol. 62, No. 9, pp. 1025–1035.
  7. Chuvieco E., Earth observation of global change: The role of satellite remote sensing in monitoring the global environment, Springer, 2008, 223 p.
  8. Cooley T., Anderson G. P., Felde G. W., Hoke M. L., Ratkowski A.., Chetwynd J. H., Gardner J. A., Adler-Golden S. M., Matthew M. W., Berk A., Bernstein L. S., Acharya P. K., Miller D., Lewis P., FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation, Proc. IEEE Intern. Geoscience and Remote Sensing Symp., 2002, Vol. 3, pp. 1414–1418.
  9. Doraiswamy P. C., Hatfield J. L., Jackson T. J., Akhmedov B., Prueger J., Stern A., Crop condition and yield simulations using Landsat and MODIS, Remote Sensing of Environment, 2004, Vol. 92, No. 4, pp. 548–559.
  10. Ilori C. O., Pahlevan N., Knudby A., Analyzing Performances of Different Atmospheric Correction Techniques for Landsat 8: Application for Coastal Remote Sensing, Remote Sensing, 2019, Vol. 11, No. 4, p. 469.
  11. Kondratyev K. Y., Kozoderov V. V., Smokty O. I., Remote Sensing of the Earth from Space: Atmospheric Correction, Berlin, Heidelberg: Springer-Verlag, 2013, 478 p.
  12. Mahiny A. S., Turner B. J., A comparison of four common atmospheric correction methods, Photogrammetric Engineering and Remote Sensing, 2007, Vol. 73, No. 4, pp. 361–368.
  13. Masek J. G., Lindsay F. E., Goward S. N., Dynamics of urban growth in the Washington DC metropolitan area, 197–1996, from Landsat observations, Intern. J. Remote Sensing, 2000, Vol. 21, No. 18, pp. 3473–3486.
  14. Vermote E. F., Tanré D., Deuzé J. L., Herman M., Morcette J. J., Second simulation of the satellite signal in the solar spectrum, 6S: An overview, IEEE Trans. Geoscience and Remote Sensing, 1997, Vol. 35, No. 3, pp. 675–686.
  15. Vermote E., Justice C., Claverie M., Franch B., Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product, Remote Sensing of Environment, 2016, Vol. 185, pp. 46–56.
  16. Vermote E., Roger J. C., Franch B., Skakun S., LASRC (Land Surface Reflectance Code): Overview, application and validation using MODIS, VIIRS, LANDSAT and Sentinel 2 data, Proc. Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2018, pp. 8173–8176.
  17. Vogelmann J. E., Tolk B., Zhu Z., Monitoring forest changes in the southwestern United States using multitemporal Landsat data, Remote Sensing of Environment, 2009, Vol. 113, No. 8, pp. 1739–1748.