ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 85-98

Zoning of the Tolbachinsky Dol based on InSAR coherence

P.G. Mikhaylyukova 1 , A.I. Zakharov 2 , L.N. Zakharova 2 
1 Lomonosov Moscow State University, Moscow, Россия
2 V.A. Kotelnikov Institute of Radioengineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow Region, Russia
Accepted: 26.02.2020
DOI: 10.21046/2070-7401-2020-17-2-85-98
The paper represents the results of geographic demarcation of Tolbachinsky Dol area (Kamchatka, Russia) based on interferometric coherence. Tolbachinsky Dol is a volcanically active region. The last eruption occurred in 2012–2013 and had not been predicted in advance. The formed lava flow is the most strongly scattering object in the volcanic area and could be used as the basis for monitoring the deformations of the volcanic structures. To identify stable zones the coherence values were calculated during interferometric processing of radar data. The data obtained by the C-band images (Sentinel-1, Radarsat-2) and L-band images (ALOS-2) during the period 2013–2016 were used as basic dataset. For each instrument, three interferometric pairs were formed using images acquired in different seasons of the year. Coherence values were calculated using Sarproz and Sarscape software. Based on the coherence values the integral maps were produced to characterize seasonal stability of lava covers of the Tolbachinsky Dol. We have established that the most stable objects of the valley are the lava of the last two eruptions (1975–1976 and 2012–2013). These objects are characterized by maximum coherence values (>0.8) at almost any time of the year. Lavas of stage I and II of volcanism have much lower coherence values: 0.3–0.4 according to the C-band radar images and about 0.6 according to the L-band radar images.
Keywords: Tolbachinsky Dol, lava fields, InSAR, coherence
Full text

References:

  1. Bol’shoe treshchinnoe Tolbachinskoe izverzhenie (1975–1976 gg., Kamchatka) (The Grand Tolbachik Fissure Eruption (1975–1976, Kamchatka)), Moscow: Nauka, 1984, 637 p.
  2. Vinogradova N. S., Sosnovskii A. V., Ispol’zovanie kart kogerentnosti dlya povysheniya tochnosti interferogramm pri obrabotke dannykh radiolokatorov s sintezirovannoi aperturoi (Using coherence maps to improve the accuracy of interferograms when processing data from synthetic aperture radars), Ural Radio Engineering J., 2018, Vol. 2, No. 1.
  3. Gordeev E. I., Murav’ev Ya. D., Samoilenko S. B., Volynets A. O., Melnikov D. V., Dvigalo V. N., Treshchinnoe Tolbachinskoe izverzhenie v 2012–2013 gg. Pervye rezul’taty (The Tolbachik fissure eruption in 2012–2013. First results), Doklady Akademii Nauk, 2013, Vol. 452, No. 5, pp. 562–566.
  4. Denisov P. V., Zakharov A. I., Mart’yanov A. S., Troshko K. A., Issledovanie interferometricheskoi kogerentnosti v zavisimosti ot intervala mezhdu radarnymi sʺemkami na primere dannykh Kh-diapazona (Investigation of interferometric coherence depending on the interval between radar surveys on the example of X band data), Materialy 2 i Vserossiiskoi nauchnoi konferentsii “Sovremennye problemy distrantsionnogo zondirovaniya, radiolokatsii, rasprostraneniya i difraktsii voln” (Proc. 2nd All-Russia Conf. “Modern Problems of Remote Sensing, Radar, Waves Propagation and Diffraction”), Murom, 2018, 2018, pp. 246–251.
  5. Zakharov A. I., Yakovlev O. I., Smirnov V. M., Sputnikovyi monitoring Zemli: Radiolokatsionnoe zondirovanie poverkhnosti (Satellite monitoring of the Earth: Radar probing of the surface), Moscow: Izd. Krasand, 2012, 248 p.
  6. Boccardo P., Gentile V., Tonolo F. G., Grandoni D., Vassileva M., Multitemporal SAR coherence analysis: lava flow monitoring case study, Proc. Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2015, pp. 2699–2702.
  7. Carn S. A., Application of synthetic aperture radar (SAR) imagery to volcano mapping in the humid tropics: a case study in East Java, Indonesia, Bull. Volcanology, 1999, No. 61, pp. 92–105.
  8. Cayol V., Cornet Fr. H., Effects of topography on the interpretation of the deformation field of prominent volcanoes-Application to Etna, Geophysical Research Letters, 1998, Vol. 25, No. 11, pp. 1979–1982.
  9. Churikova T. G., Gordeychik B. N., Edwards B. R., Ponomareva V. V., Zelenin E. A. (2015a), The Tolbachik volcanic massif: A review of the petrology, volcanology and eruption history prior to the 2012–2013 eruption, J. Volcanology and Geothermal Research, 2015, Vol. 307, pp. 3–21.
  10. Churikova T. G., Gordeychik B. N., Iwamori H., Nakamura H., Ishizuka O., Nishizawa T., Haraguchi S., Miyazaki T., Vaglarov B. S. (2015b), Petrological and geochemical evolution of the Tolbachik volcanic massif, Kamchatka, Russia, J. Volcanology and Geothermal Research, 2015, Vol. 307, pp. 156–181.
  11. Dietterich H. R., Poland M. P., Schmidt D. A., Cashman K. V., Sherrod D. R., Espinosa A. T., Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai’i, with synthetic aperture radar coherence, Geochemistry, Geophysics, Geosystems, 2012, Vol. 13, No. 5, pp. 1–17.
  12. Gaddis L., Mouginis-Mark P., Singer R., Kaupp V., Geologic analyses of Shuttle Imaging Radar (SIR-B) data of Kilauea Volcano, Hawaii, Geological Soc. America Bull., 1989, Vol. 101, pp. 317–332.
  13. Jiang Z., Huete A. R., Chen J., Chen Y., Li J., Yan G., Zhang X., Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction, Remote Sensing of Environment, 2006, Vol. 101, No. 3, pp. 366–378.
  14. Lundgren P., Casu F., Manzo M., Pepe A., Berardino P., Sansosti E., Lanari R., Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry, Geophysical Research Letters, 2004, Vol. 31, p. 4.
  15. Lyon J. G., Yuan D., Lunetta R. S., Elvidge C. H., A change detection experiment using vegetation indices, Photogrammetric Engineering and Remote Sensing, 1998, Vol. 64, No. 2, pp. 143–150
  16. McAlpin D., Meyer F. J., Multi-sensor data fusion for remote sensing of post-eruptive deformation and depositional features at Redoubt Volcano, J. Volcanology and Geothermal Research, 2013, Vol. 259, pp. 441–423.
  17. Nahar S. S., Mahmud A., SAR Observation for the Surface Displacements at Mt. Etna between 2003 and 2007, Intern. J. Geosciences, 2015, Vol. 6, pp. 159–171.
  18. Ormsby J. P., Choudhury B. J., Owe M., Vegetation spatial variability and its effect on vegetation indices, Intern. J. Remote Sensing, 1987, Vol. 8, No. 9, pp. 1301–1306.
  19. Pallister J. S., Schneider D. J., Griswold J. P., Keeler R. H., Burton W. C., Noyles Ch., Newhall Ch. G., Ratdomopurbo A., Merapi 2010 eruption — Chronology and extrusion rates monitored with satellite radar and used in eruption forecasting, J. Volcanology and Geothermal Research, 2013, Vol. 261, pp. 144–152.
  20. Pinel V., Poland M. P., Hooper A., Volcanology: Lessons learned from Synthetic Aperture Radar imagery, J. Volcanology and Geothermal Research, 2014, Vol. 289, pp. 81–113.
  21. Poland M. P., Time-averaged discharge rate of subaerial lava at Kilauea Volcano, Hawai’i, measured from TanDEM-X Interferometry: Implications for magma supply and storage during 2011–2013, J. Geophysical Research. Solid Earth, 2014, Vol. 119, pp. 5464–5481.
  22. Rowland S. K., Harris A. J. L., Wooster M. J., Amelung F., Garbeil H., Wilson L., Mouginis-Mark J. P., Volumetric characteristics of lava flows from interferometric radar and multispectral satellite data: the 1995 Fernandina and 1998 Cerro Azul eruptions in the western Galpagos, Bull. Volcanology, 2003, Vol. 65, pp. 311–330.
  23. Smets B., Christelle W., d’Oreye N., A new map of the lava flow field of Nyamulagira (D. R. Congo) from satellite imagery, J. African Earth Sciences, 2010, Vol. 58, pp. 778–786.
  24. Stevens N. F., Wadge G., Williams C. A., Morley J. G., Muller J.-P., Murray J. B., Upton M., Surface movements of emplaced lava flows measured by synthetic aperture radar interferometry, J. Geophysical Research. Solid Earth, 2001, Vol. 106, No. B6, pp. 11293–11313.
  25. Wadge G., Cole P., Stinton A., Komorowski J.-C., Stewart R., Toombs A. C., Legendre Y., Rapid topographic change measured by high-resolution satellite radar at Soufriere Hills Volcano, Montserrat, 2008–2010, J. Volcanology and Geothermal Research, 2011, Vol. 199, pp. 142–152.
  26. Wegmuller U., Santoro M., Werner C., Cartus O., On the estimation and interpretation of Sentinel-1 TOPS InSAR coherence, Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR Workshop, 2015, pp. 89–93.
  27. Yang X., Tu S., Bai Y., Yang W., Fusion of intensity/coherent information using region covariance features for unsupervised classification of SAR imagery, Proc. Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2016, pp. 941–944.