ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 65-74

Technology of energy-saving functional distributed computing in a cluster of Earth remote sensing microsatellites

A.G. Basyrov 1 , V.V. Shirobokov 1 , A.V. Kalyuzhnyy 1 
1 A.F. Mozhaisky Military Space Academy, Saint Petersburg, Russia
Accepted: 21.02.2020
DOI: 10.21046/2070-7401-2020-17-2-65-74
The paper discusses a cluster of remote sensing microsatellites with a dedicated “spacecraft server” that performs autonomous cluster operation planning. The transfer of a number of tasks related to planning the functioning of a cluster and pre-processing target information on board a microsatellite requires an increased performance of its on-board computing system, and, consequently, leads to an increase in on-board energy resource consumption. The paper discusses the approach to the organization of energy-saving information processes based on the technology of functionally distributed computing in a promising cluster of microsatellites with one or more dedicated spacecraft equipped with a high-performance onboard computing system. A model of functionally distributed computing is proposed, taking into account the energy-time costs of collecting and processing information depending on the time of transmission of information from microsatellites to a dedicated spacecraft-server, the amount of this information, the directive time of issuing results of onboard processing to a ground control complex. The optimization task of planning energy-saving functionally distributed information processing has been set. The general method of organizing functionally-distributed information processes is disclosed, and the possibilities of saving energy resources of microsatellite power sources are shown, which ensures the extension of the active life of the cluster and its readiness. To analyze the efficiency of the organization of energy-saving functionally distributed computing in the orbital grouping of microsatellites, simulation modeling was performed and the results of data processing and solving the problem of planning the use of the microsatellite target equipment in a cluster were presented.
Keywords: functionally distributed computing, microsatellite cluster, on-board computer system, energy-saving information processing
Full text

References:

  1. Basyrov A. G., Dudkin A. S., Shirobokov V. V., Organizatsiya raspredelennoi obrabotki informatsii v dinamicheski izmenyayushcheisya vychislitel’noi srede (Organization of distributed information processing in a dynamically changing computing environment), Trudy Voenno-kosmicheskoi akademii imeni A. F. Mozhaiskogo, Saint Petersburg: A. F. Mozhaisky Military Space Academy, 2015, No. 649, pp. 64–71.
  2. Blinov V. N., Ivanov N. N., Sechenov Yu. N., Malye kosmicheskie apparaty, v 3 knigakh (Small spacecraft, 3 books), Omsk: OmGTU, 2010.
  3. Gorodetskiy V. I., Upravlenie kollektivnym povedeniem robotov v avtonomnoi missii (Managing the collective behavior of robots in an autonomous mission), Robototekhnika i tekhnicheskaya kibernetika, 2016, No. 1(10), pp. 40–54.
  4. Karsaev O. V., Obzor traditsionnykh i innovatsionnykh sistem planirovaniya missii KA (Overview of traditional and innovative planning systems for missions of spacecraft), Trudy SPIIRAN, 2016, No. 5(48), pp. 151–181.
  5. Loupian E. A., Mazurov A. A., Nazirov R. R., Proshin A. A., Flitman E. V., Tekhnologiya postroeniya avtomatizirovannykh informatsionnykh sistem sbora, obrabotki, khraneniya i rasprostraneniya sputnikovykh dannykh dlya resheniya nauchnykh i prikladnykh zadach (The technology of building automated information systems for collecting, processing, storing and distributing satellite data to solve scientific and applied data tasks), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2004, No. 1, pp. 81–89.
  6. Loupian E. A., Balashov I. V., Burtsev M. A., Efremov V. Yu., Kashnitsky A. V., Kobets D. A., Krasheninnikova Yu. S., Mazurov A. A., Nazirov R. R., Proshin A. A., Sychugov I. G., Tolpin V. A., Uvarov I.A., Flitman E. V., Sozdanie tekhnologii postroeniya informatsionnykh sistem distantsionnogo monitoringa (Development of information systems design technologies), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 53–75.
  7. Loupian E. A., Burtsev M. A., Proshin A. A., Kobets D. A., Razvitie podkhodov k postroeniyu informatsionnykh sistem distantsionnogo monitoringa (Evolution of remote monitoring information systems development concepts),  Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, No.  3, pp. 53–58.
  8. Shirobokov V. V., Basyrov A. G., Metodika funktsional’no-raspredelennoi obrabotki informatsii v perspektivnykh klasterakh mikrosputnikov distantsionnogo zondirovaniya Zemli (Methods of functionally distributed information processing in promising clusters of microsatellites for remote sensing of the Earth), Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli, 2017, Vol. 9, No. 4, pp. 62–70.
  9. Shirobokov V. V., Nechay A. A., Algoritm planirovaniya energosberegayushchei parallel’noi obrabotki informatsii s uchetom informatsionnoi vazhnosti i vremeni postupleniya zadach (The planning algorithm for energy-saving parallel processing of information, taking into account the importance of information and the time of receipt of tasks), Vestnik Rossiiskogo novogo universiteta. Ser. “Slozhnye sistemy: modeli, analiz i upravlenie”, 2017, No. 1, pp. 86–91.
  10. Shirobokov V. V., Basyrov A. G., Shvetsov A. S., Shushakov A. O., Model’ raspredelennoi obrabotki informatsii v usloviyakh vozdeistviya destabiliziruyushchikh faktorov na informatsionno-telekommunikatsionnuyu sistemu (Model of distributed information processing under the influence of destabilizing factors on the information and telecommunication system), Sovremennye problemy nauki i obrazovaniya, 2015, No. 2, p. 215.
  11. Araniti G., Bezirgiannidis N., Birrane E., Bisio I., Burleigh S., Caini C., Feldmann M., Marchese M., Segui J., Suzuki K., Contact Graph Routing in DTN Space Networks: Overview, Enhancements and Performance, IEEE Communication Magazine, 2015, Vol. 53(3), pp. 38–46.
  12. Davis T. M., Operationally Responsive Space ― The Way Forward, Proc. AIAA/USU Conf. Small Satellites, 2015, SSC15, pp. 7–49.
  13. Foster I., Zhao Y., Raicu I., Lu S., Cloud computing and grid computing 360-degree compared, Grid Computing Environments Workshop, Proc., 2008, pp. 1–10.
  14. Fraire J. A., Madoery P., Burleigh S., Feldmann M., Finochietto J., Charif A., Zergainoh N., Velazco R., Assessing Contact Graph Routing Performance and Reliability in Distributed Satellite Constellations, J. Computer Networks and Communications, 2017, Vol. 2017, Article ID 2830542, pp. 1–18.
  15. Iacopino C., Harrison S., Brewer A., Mission Planning Systems for Commercial Small-Sat Earth Observation Constellations, Proc. 9th Intern. Workshop on Planning and Scheduling for Space (IWPSS), 2015, pp. 45–52.