ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 149-161

Doppler spectrum of microwave signal backscattered by sea surface at small incidence angles experiment

V.Yu. Karaev 1 , M.A. Panfilova 1 , M.S. Ryabkova 1 , Yu.A. Titchenko 1 , E.M. Meshkov 1 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
Accepted: 30.12.2019
DOI: 10.21046/2070-7401-2020-17-2-149-161
The analysis of the properties of the Doppler spectrum of microwave radar signal backscattered by the sea surface at incidence angles less than 19º is continued. The data were obtained during an experiment on an offshore oceanographic platform located in the Black Sea. To describe the Doppler spectrum, in addition to width and shift, skewness and kurtosis coefficients were first used. It is shown that the coefficients grow with increasing incidence angle and can be used to develop a quantitative criterion for the transition from the quasi-specular (Kirchhoff method) to the resonant (perturbation method) backscattering mechanism. An original radar data calibration procedure has been developed based on a theoretical scattering model and allowing comparison of measurements of different radars. When processing the experimental data, we used the procedure for determining the effective wind speed and effective dimensionless wind fetch for a selected model of the spectrum of wind waves. The sea wave spectrum reconstructed in this way was used to calculate the second-order statistical moments and determine the spectral and energy characteristics of the backscattered signal. Numerical estimates showed that the dependences of the backscattered radar cross section, width, and shift of the Doppler spectrum on the incidence angle correlate well with measurements at small incidence angles (<8–14º). Comparison of the mean square slopes of the large-scale (compared to the radar wavelength) waves calculated from the wind wave spectrum and reconstructed from the angular dependence of the backscattered radar cross section, showed good agreement. To describe the scattering in the transition region of incidence angles (~10–20º), it is necessary to take into account the resonant backscattering mechanism.
Keywords: width and shift of the Doppler spectrum, Kirchhoff approximation, two-scale model of scattering surface, small incidence angles, wind waves, antenna beam
Full text

References:

  1. Bass F., Fuks I., Rasseyanie voln na statisticheski nerovnoi poverkhnosti (Wave scattering on a statistically rough surface), Moscow: Nauka, 1972, 424 p.
  2. Karaev V., Kanevskii M., Meshkov E., Uproshchennoe opisanie morskogo volneniya dlya zadach radiolokatsionnogo distantsionnogo zondirovaniya (Simplified approach to sea roughness description for the problem of radar remote sensing of the sea surface), Issledovanie Zemli iz kosmosa, 2011, No. 2, pp. 26–39.
  3. Karaev V., Panfilova M., Balandina G., Chu K., Vosstanovlenie dispersii naklonov krupnomasshtabnykh voln po radiolokatsionnym izmereniyam v SVCh-diapazone (Retrieval of the slope variance by microwave measurements), Issledovanie Zemli iz kosmosa, 2012, No. 4, pp. 62–77.
  4. Karaev V., Ryabkova M., Panfilova M., Titchenko Yu., Meshkov E., Svoistva doplerovskogo spektra radiolokatsionnogo SVCh-signala, otrazhennogo morskoi poverkhnost’yu pri malykh uglakh padeniya (Properties of the Doppler spectrum of a microwave radar signal backscattered by a sea surface at low incidence angles), 16-ya Vserossiiskaya otkrytaya konferentsiya “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (16th All-Russia Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), Book of Abstracts, 12–16 Nov. 2018, Moscow: IKI RAN, 2018, p. 278.
  5. Karaev V., Titchenko Yu., Meshkov E., Panfilova M., Ryabkova M., Doplerovskii spektr radiolokatsionnogo signala, otrazhennogo morskoi poverkhnost’yu pri malykh uglakh padeniya (Doppler spectrum of microwave signal backscattered by sea surface at small incidence angles), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, No. 6, pp. 221–234.
  6. Kur’yanov B. F., Rasseyanie zvuka na sherokhovatoi poverkhnosti s dvumya tipami nerovnostei (Sound scattering on a rough surface with two types of roughness), Akusticheskii zhurnal, 1962, Vol. 8, No. 3, pp. 325–333.
  7. Panfilova M. A., Karaev V. Yu., Titchenko Yu. A., Ryabkova M. A., Vosstanovlenie statisticheskikh kharakteristik vetrovogo volneniya po shirine i smeshcheniyu doplerovskogo spektra otrazhennogo radiolokatsionnogo signala (Retrieval of statistical characteristics of wind waves from the width and shift of the Doppler spectrum of the reflected radar signal), 15-ya Vserossiiskaya otkrytaya konferentsiya “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (15th All-Russia Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), Book of Abstracts, 13–17 Nov. 2017, Moscow, IKI RAN, 2017, p. 296.
  8. Titchenko Yu. A., Karaev V. Yu., Metod opredeleniya parametrov morskogo volneniya s pomoshch’yu modifitsirovannogo akusticheskogo volnografa (Method for determining the parameters of sea waves using a modified acoustic wave gauge), Izvestiya vysshikh uchebnykh zavedenii, Ser. Radiofizika, 2012, Vol. 55, No. 8, pp. 544–554.
  9. Fuks I. M., K teorii rasseyaniya radiovoln na vzvolnovannoi poverkhnosti morya (On the theory of scattering of radio waves on an rough surface of the sea), Izvestiya vysshikh uchebnykh zavedenii, Ser. Radiofizika, 1966, Vol. 9, No. 9, pp. 876–887.
  10. Ardhuin F., The SKIM Mission: a Pathfinder for Doppler Oceanography from Space, Doppler Oceanography from Space, Proc. Workshop, Brest, France, 10–12 Oct. 2018, 47 p., URL: https://dofs.sciencesconf.org/data/pages/Ardhuin.pdf (accessed 14.10.2019).
  11. Boisot O., Amarouche L., Lalaurie J.-C., Guerin C.-A., Dynamical Properties of Sea Surface Microwave Backscatter at Low-Incidence: Correlation Time and Doppler Shift, IEEE Trans. Geoscience and Remote Sensing, 2016, Vol. 54, No. 12, pp. 7385–7395.
  12. Chu X., He Y., Karaev V., Chen G., Relationships between Ku-band radar backscatter and integrated wind and waves parameters at low incidence angles, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 11, pp. 4599–4609, DOI: 10.1109/TGRS.2012.2191560.
  13. Fois F., Hoogeboom P., Chavalier F., Stoffelen A., An analytical model for the description of the full-polarimetric sea surface Doppler signature, J. Geophysical Research: Oceans, 2015, Vol. 120, pp. 988–1015.
  14. Freilich M. H., Vanhoff B. A., The relation between winds, surface roughness, and radar backscatter at low incidence angles from TRMM Precipitation Radar measurements, J. Atmospheric and Oceanic Technology, 2003, Vol. 20, No. 4, pp. 549–562.
  15. GPM Data Utilization Handbook. First Edition, Japan Aerospace Exploration Agency, 2014, 92 p.
  16. Hauser D., Tison C., Amiot T., Delaye L., Corcoral N., Castillan P., SWIM: the first spaceborne wave scatterometer, IEEE Trans. Geoscience and Remote Sensing, 2017, Vol. 55, No. 5, pp. 3000–3014.
  17. Johnson J., Toporkov J., Brown G. A., Numerical Study of Backscattering from Time-Evolving Sea Surfaces: Comparison of Hydrodynamic Model, IEEE Trans. Geoscience and Remote Sensing, 2001, Vol. 39, No. 11, pp. 2411–2420, DOI: 10.1109/36.964977.
  18. Karaev V., Kanevsky M., Balandina G., Cotton P., Challenor P., Gommenginder C., Srocosz M., On the problem of the near ocean surface wind speed retrieval by radar altimeter: two-parametric algorithm, Intern. J. Remote Sensing, 2002, Vol. 23, No. 16, pp. 3263–3283.
  19. Karaev V., Ryabkova M., Panfilova M., Titchenko Yu., Meshkov E., The Doppler spectrum of the microwave radar signal backscattered by the sea surface at low incidence angles, Proc. IGARSS, 2018, pp. 979–982.
  20. Li X., Xu X., Scattering and Doppler spectral analysis for two-dimensional linear and nonlinear sea surfaces, IEEE Trans. Geoscience and Remote Sensing, 2011, Vol. 49, No. 2, pp. 603–611.
  21. Nouguier F., Guerin F., Soriano G., Analytical Techniques for the Doppler Signature of Sea Surfaces in the Microwave Regime — II: Nonlinear Surfaces, IEEE Trans. Geoscience and Remote Sensing, 2011, Vol. 49, No. 12, pp. 4920–4927.
  22. Nouguier F., Chapron B., Collard F., Mouche A., Rascle N., Ardhuin F., Wu X., Sea Surface Kinematics From Near-Nadir Radar Measurements, IEEE Trans. Geoscience and Remote Sensing, 2018, Vol. 56, No. 10, pp. 6169–6179.
  23. Panfilova M., Karaev V., Guo J. (2018a), Oil slick observation at low incidence angles in Ku-band, J. Geophysical Research: Oceans, 2018, Vol. 123, No. 3, pp. 1924–1936, available at: https://doi.org/10.1002/2017JC013377.
  24. Panfilova M., Ryabkova M., Titchenko Y., Karaev V. (2018b), Retrieving of significant wave height and period from the Doppler spectrum of backscattered microwave signal, 12th European Conf. Antennas and Propagation (EuCAP 2018), Proc., London, 2018, pp. 1–3, DOI: 10.1049/cp.2018.1084.
  25. Panfilova M., Ryabkova M., Karaev V., Skiba E., Retrieval of the statistical characteristics of wind waves from the width and shift of the Doppler spectrum of the backscattered microwave signal, IEEE Trans. Geoscience and Remote Sensing, 2019, Vol. 20, No. 3, pp. 1–7.
  26. Ryabkova M., Karaev V., A modified wave spectrum for modeling in remote sensing problems, Proc. IGARSS, Italy, 2018, pp. 3274–3277.
  27. Ryabkova M., Karaev V., Titchenko Y., Guo J., A review of wave spectra models as applied to the problem of radar probing of the sea surface, J. Research: Oceans, 2019, No. 124, pp. 1–31, available at: https://doi.org/10.1029/2018JC014804.
  28. Titchenko Yu., Karaev V., Sea surface waves parameters retrieval method based on the measurement of the Doppler spectrum of the quasispecular reflected waves, Proc. IGARSS, 2017, pp. 721–724.
  29. Toporkov J., Brown G., Numerical simulations of scattering from time-varying, randomly rough surfaces, IEEE Trans. Geoscience and Remote Sensing, 2000, Vol. 38, No. 4, pp. 1616–1625, DOI: 10.1109/36.851961.
  30. Toporkov J., Brown G., Numerical Study of the Extended Kirchhoff Approach and the Lowest Order Small Slope Approximation for Scattering From Ocean-Like Surfaces: Doppler Analysis, IEEE Trans. Antennas and Propagation, 2002, Vol. 50, No. 4, pp. 417–425, DOI: 10.1109/TAP.2002.1003376.
  31. Toporkov J., Sletten M., Investigation of Doppler Spectra of Sea Backscatter through Large-Scale Monte Carlo Simulations: Direct Numerical Solution and Approximate Models, IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS-2018), Proc., Valencia, 2018, pp. 41–44, DOI: 10.1109/IGARSS.2018.8518836.
  32. Voronovich A., Zavorotny V., Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves, Waves Random Media, 2001, Vol. 11, pp. 247–269.
  33. Wang J., Xu X., Doppler simulation and analysis for 2-D Sea surfaces up to Ku-band, IEEE Trans. Geoscience and Remote Sensing, 2016, Vol. 54, No. 1, pp. 466–478.
  34. Wright J. W., A new model for sea clutter, IEEE Trans. Antennas and Propagation, 1968, Vol. 16, pp. 217–223.