ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 40-48

Variational assimilation of satellite data on surface concentration of suspended matter in the Azov Sea

V.S. Kochergin 1 , S.V. Kochergin 1 , S.V. Stanichny 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 11.03.2020
DOI: 10.21046/2070-7401-2020-17-2-40-48
Satellite data allows us to obtain consistent information about the state of the sea surface and changes in spatial structures determined by the concentration of scattering suspension in the optical range. The main problem is the interference caused by, for example, cloud cover. Such interference often completely or partially interrupts the flow of information from the sea surface. Therefore, the task of restoring data for time intervals with missing data (gap filling) is important and relevant. This problem can be solved in various ways, including on the basis of variational assimilation of measurement data, which is implemented by identifying the input parameters of the model. The passive impurity transfer model itself acts as a space-time interpolant and the resulting solution on the used time interval is consistent with the mathematical model and with the measurement data due to the minimization of the prediction quality functional. The performance of the variational identification algorithm is shown on specific data, and the results obtained are compared with successive satellite images of the MODIS scanner. The results obtained showed good consistency of the results of numerical modeling with satellite information due to the minimization of the forecast quality functional, due to model spatial-temporal interpolation, the obtained concentration fields cover the entire water area of the sea of Azov at the time interval of model integration.
Keywords: satellite data, concentration of passive admixture, transport model, Azov Sea, adjoint equation
Full text

References:

  1. Ivanov V. A., Fomin V. V., Matematicheskoe modelirovanie dinamicheskih protsessov v zone morya-susha (Mathematical modeling of dynamic processes in the area of the Sea-Earth), Sevastopol: EKOSI-gidrofizika, 2008, 363 p.
  2. Kochergin V. S., Identifikatsiya nachalnogo polya kontsentratsii dlya modeli perenosa passivnoi primesi v Azovskom more (Identification of the initial concentration field for the passive admixture transport model in the Azov Sea), Ekologicheskaya bezopasnost pribrezhnoi i shelfovoi zon i kompleksnoe ispolzovanie resursov shelfa, Sevastopol: MGI NANU, 2012, Issue 26, Vol. 2, pp. 123–125.
  3. Kochergin S. V., Kochergin V. S., Fomin V. V., Opredelenie kontsentratsii passivnoi primesi v Azovskom more na osnove resheniya serii sopryazhennykh zadach (Determination of passive admixture concentration in the Azov Sea based on a solutions series of adjoint tasks), Ekologicheskaya bezopasnost pribrezhnoi i shelfovoi zon i kompleksnoe ispolzovanie resursov shelfa, Sevastopol: MGI NANU, 2012, Issue 26, Vol. 2, pp. 112–118.
  4. Kochergin V. S., Kochergin S. V., Stanichny V. S., Ispol’zovanie metoda sopryazhennykh uravnenii pri identifikatsii istochnikov zagryaznenii v Azovskom more (Identification of pollution sources in the Sea of Azov using the adjoint equation method), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 1, pp. 50–57.
  5. Kremenchutskii D. A., Kubryakov A. A., Zav’yalov P. O., Konovalov B. V., Stanichny S. V., Aleskerova A. A., Opredelenie kontsentratsii vzveshennogo veshchestva v Chernom more po dannym sputnika MODIS (Determination of the concentration of suspended matter in the Black sea using data from the MODIS satellite), Ekologicheskaya bezopasnost’ pribrezhnoi i shel’fovoi zon i kompleksnoe ispol’zovanie resursov shel’fa, 2014, No. 29, pp. 1–9.
  6. Marchuk G. I., Matematicheskoe modelirovanie v probleme okruzhayushchei sredy (Mathematical modeling in the environmental problem), Moscow: Nauka, 1982, 320 p.
  7. Fomin V. V., Chislennaya model tsirkulyatsii vod Azovskogo morya (Numerical circulation model of the Azov Sea water), Nauchnye trudy Ukrainskogo nauchno-issledovatel’skogo gidrometeorologicheskogo instituta, 2002, Vol. 249, pp. 246–255.
  8. Blumberg A. F., Mellor G. L., A description of the three-dimensional coastal ocean circulation model, Three-dimensional coastal ocean models, Heaps N. (ed.), AGU, 1987, Vol. 4, pp. 1–16.
  9. Kochergin V. S., Kochergin S. V., Identification of a Pollution Source Power in the Kazantip Bay Applying the Variation Algorithm, Physical Oceanography, 2015, No. 2, pp. 69–76.
  10. Marchuk G. I., Penenko V. V., Application of optimization methods to the problem of mathematical simulation of atmospheric processes and environment, Modelling and Optimization of Complex Systems, Proc. IFIP-TC7 Working Conf., New York: Springer, 1978, pp. 240–252.
  11. Shutyaev V. P., Le Dimet F.-X., Parmuzin E., Sensitivity analysis with respect to observations in variational data assimilation for parameter estimation, Nonlinear Processes in Geophysics, 2018, Vol. 25, Issue 2, pp. 429–439.
  12. Zalesny V. B., Diansky N. A., Fomin V. V., Moshonkin S. N., Demyshev S. G., Numerical model of the circulation of the Black Sea and the Sea of Azov, Russian J. Numerical Analysis and Mathematical Modelling, 2012, Vol. 27, Issue 1, pp. 95–112.