ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 215-226

On the retrieval of submesoscale structures of the Black Sea surface velocity fields via variational assimilation of NOAA AVHRR IR image sequences

E.V. Plotnikov 1 , A.L. Kholod 1 , A.A. Kubryakov 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 31.03.2020
DOI: 10.21046/2070-7401-2020-17-2-215-226
Information on the velocity fields of surface sea currents is in demand in solving a wide range of oceanographic problems. Nowadays, the main sources of this data are satellite altimetry measurements and results of simulation using marine hydrodynamic models. In addition, in recent years, methods of reconstructing velocity fields by analyzing sequences of satellite images in the optical and infrared bands have been increasingly used. Due to the lack of a priori correct data on surface flow, an actual task is to analyze the accuracy of calculations based on a comparison of the available results obtained from different sources. The paper presents the results of synchronized calculations of the surface current velocity fields in the Black Sea using three data sources. The calculations were carried out for two situations with a minimal cloud cover. For each of them, the following fields were obtained: 1) field calculated from sequences of NOAA AVHRR images in the IR range using the 4-D variational assimilation technique; 2) simulated field corresponding to an upper model layer of 2.5 meters; 3) geostrophic component of the surface flow velocity obtained via satellite altimetry. Similarities and differences of mesoscale structures in the obtained fields were demonstrated. The paper may be interesting to the specialists in the field of marine hydrodynamics, as well as to anyone interested in algorithms for restoring the speed of objects on the earth’s surface using a series of satellite images.
Keywords: optical flow estimation, variational data assimilation, AVHRR images, sea surface currents, satellite altimetry, Black Sea simulation
Full text


  1. Aleksanin A. I., Aleksanina M. G., Karnatsky A. Yu., 2013, Avtomaticheskii raschet skorostei poverkhnostnykh techenii okeana po posledovatel’nosti sputnikovykh izobrazhenii (Automatic computation of the sea surface velocities via satellite image sequences), Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 2, pp. 131–142.
  2. Korotaev G. K., Saenko O. A., Koblinski C. D., Demyshev S. G., Knysh V. V., Otsenka tochnosti, metodika i nekotorye rezul’taty usvoeniya al’timetricheskikh dannykh TOPEX/POSEIDON v modeli obshchei tsirkulyatsii Chernogo morya (An estimation accuracy, methodology and some results of the TOPEX/POSEIDON altimeter data assimilation into the Black Sea general circulatıon model), Issledovanie Zemli iz kosmosa, 1998, No. 3, pp. 3–17.
  3. Korotaev G. K., Ratner Yu. B., Ivanchik M. V., Operativnaya sistema diagnoza i prognoza gidrofizicheskikh kharakteristik Chernogo morya (Diagnosis and forecast operative system of the Black Sea hydrophysical characteristics), Izvestiya Rossiiskoi akademii nauk. Fizika atmosfery i okeana, 2016, Vol. 52, No. 5, pp. 609–617.
  4. Kubryakov A. A., Stanichny S. V. (2013 a), Otsenka kachestva vosstanovleniya poverkhnostnoi geostroficheskoi tsirkulyatsii Chernogo morya po dannym sputnikovoi al’timetrii na osnove sopostavleniya s drifternymi izmereniyami (Quality estimation of the altimetry-derived surface geostrophic currents in the Black Sea from the comparison with drifting buoy measurement), Issledovanie Zemli iz kosmosa, 2013, No. 3, pp. 3–12.
  5. Kubryakov A. A., Stanichny S. V. (2013b), Trendy urovnya Chernogo morya po kontaktnym i al’timetricheskim nablyudeniyam (The Black Sea level trends from tide gages and satellite altimetry), Meteorologiya i gidrologiya, 2013, No. 5, pp. 48–55.
  6. Plotnikov E. V., Metodika vydeleniya oblachnosti dlya dannyh skanera AVHRR, otnosyashchihsya k Chernomu moryu (Cloud filtration technique for the Black-Sea AVHRR data), Morskoi gidrofizicheskii zhurnal, 2009, No. 3. pp. 69–76.
  7. Avsar N. B., Jin S., Kutoglu H., Gurbuz G., Sea level change along the Black Sea coast from satellite altimetry, tide gauge and GPS observations, 2016, Geodesy and Geodynamics, Vol. 7, No. 1, pp. 50–55.
  8. Béréziat D., Herlin I., Non-linear observation equation for motion estimation, Proc. 19 th IEEE Intern. Conf. Image Processing, 2012, pp. 1521–1524.
  9. Chelton D. B., Schlax M. G., Samelson R. M., Global observations of nonlinear mesoscale eddies, Progress in Oceanography, 2011, Vol. 91, No. 2, pp. 167–216.
  10. Chen W., Nonlinear inverse model for velocity estimation from an image sequence, J. Geophysical Research, 2011, Vol. 116, No. C6.
  11. Demyshev S. G., A numerical model of online forecasting Black Sea currents, Izvestiya, Atmospheric and Oceanic Physics, 2012, Vol. 48, No. 1, pp. 120–132.
  12. Fu L. L., Cazenave A., Satellite altimetry and earth sciences: a handbook of techniques and applications, Vol. 69, 1st Edition, Academic Press, 2000, 463 p.
  13. Gilbert J. C., Lemaréchal C., The module M1QN3, Version 3.1, INRIA Rocquencourt and Rhone-Alpes, 2006. 16 p.
  14. Horn B. K. P., Schunck B. G., Determining optical flow, Techniques and Applications of Image Understanding. International Society for Optics and Photonics, 1981, Vol. 281, pp. 319–331.
  15. Kelly K. A., An inverse model for near-surface velocity from infrared images, J. Physical Oceanography, 1989, Vol. 19, No. 12, pp. 1845–1864.
  16. Kelly K. A., Strub P. T., Comparison of velocity estimates from advanced very high resolution radiometer in the coastal transition zone, J. Geophysical Research: Oceans, 1992, Vol. 97, No. C6, pp. 9653–9668.
  17. Korotaev G. K., Huot E., Le Dimet F. X., Herlin I., Stanichny S. V., Solovyev D. M., Wu L., Retrieving ocean surface current by 4-D variational assimilation of sea surface temperature images, Remote Sensing of Environment, 2008, Vol. 112, No. 4, pp. 1464–1475.
  18. Kubryakov A. A., Stanichny S. V., Mean Dynamic Topography of the Black Sea, computed from altimetry, drifter measurements and hydrology data, Ocean Science, 2011, Vol. 7, No. 6, pp. 745–753.
  19. Kubryakov A. A., Stanichny S. V., Zatsepin A. G., Kremenetskiy V. V., Long-term variations of the Black Sea dynamics and their impact on the marine ecosystem, J. Marine Systems, 2016, Vol. 163, pp. 80–94.
  20. Kubryakov A. A., Plotnikov E. V., Stanichny S. V., Reconstructing Large- and Mesoscale Dynamics in the Black Sea Region from Satellite Imagery and Altimetry Data — A Comparison of Two Methods, Remote Sensing, 2018, Vol. 10, No. 2, p. 239.
  21. Lucas B. D., Kanade T., An iterative image registration technique with an application to stereo vision, Proc. Imaging Understanding Workshop, 1981, pp. 121–130.
  22. Matthews D. K., Emery W. J., Velocity observations of the California Current derived from satellite imagery, J. Geophysical Research: Oceans, 2009, Vol. 114, No. C8, 14 p.
  23. Maximenko N., Niiler P., Centurioni L., Rio M. H., Melnichenko O., Chambers D., Galperin B., Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques, J. Atmospheric and Oceanic Technology, 2009, Vol. 26, No. 9, pp. 1910–1919.
  24. Nerem R. S., Schrama E. J., Koblinsky C. J., Beckley B. D., A preliminary evaluation of ocean topography from the TOPEX/POSEIDON mission, J. Geophysical Research: Oceans, 1994, Vol. 99, No. C12, pp. 24565–24583.
  25. Rio M. H., Hernandez F., A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model, J. Geophysical Research: Oceans, 2004, Vol. 109, No. C12, 19 p.
  26. Stanev E. V., Le Traon P. Y., Peneva E. L., Sea level variations and their dependency on meteorological and hydrological forcing: Analysis of altimeter and surface data for the Black Sea, J. Geophysical Research: Oceans, 2000, Vol. 105, No. C7, pp. 17203–17216.
  27. Qazi W. A., Emery W. J., Fox-Kempe B., Computing ocean surface currents over the coastal California current system using 30-min-lag sequential SAR images, IEEE Trans. Geoscience and Remote Sensing, 2014, Vol. 52, pp. 7559–7580.
  28. Volkov D. L., Larnicol G., Dorandeu J., Improving the quality of satellite altimetry data over continental shelves, J. Geophysical Research: Oceans, 2007, Vol. 112, No. C6, 20 p.