ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 80-88

The effect of radiation on key parameters of matrix photodetector devices

A.A. Kobeleva 1 , S.V. Voronkov 1 , S.A. Prokhorova 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 16.01.2020
DOI: 10.21046/2070-7401-2020-17-1-80-88
The characteristics of a stellar sensor are largely determined by the matrix photodetector (FPU) underlying it. The key characteristics of the FPU include sensitivity, linearity and non-uniformity of sensitivity, as well as dynamic range and intrinsic noise. The impact of ionizing radiation from outer space leads to the degradation of these characteristics. This paper presents methods for measuring photometric parameters (dark signal in individual pixels, average value of the dark signal and standard deviation of the dark signal over the frame, structural component of noise, uneven pixel sensitivity, linearity of sensitivity). The nature of the FPU intrinsic noise is considered. The relationship between the measured parameters of the FPU and the nature of the noise is determined. The main factors affecting the magnitude of the noise are identified: temperature, ionization, defects in the structure of the semiconductor and exposure time. Two types of FPUs are used in stellar sensors of the BOKZ family: CCD arrays with a virtual phase and CMOS arrays with an 8-transistor cell structure. The radiation effects in the CMOS and CCD matrices are compared. The problem of choosing the temperature regime of FPU operation, including during radiation tests, is being raised. The advantages (reduction of FPU intrinsic noise, increase in dynamic range) and minuses (decrease in the number of annealed defects) of lowering the operating temperature of FPU are considered.
Keywords: star tracker, astrometry, photodetector, noise, ionizing radiation of outer space, dose effects, displacement effects, annealing, CMOS, CCD
Full text

References:

  1. Avanesov G. A., Akimov V. V., Voronkov S. V., Rezul’taty ispytanii PZS-matrits rossiiskogo i zarubezhnogo proizvodstva na istochnikakh zaryazhennykh chastits (Test results of CCDs of Russian and foreign production on charged particle sources), Vserossiiskaya nauchno-tekhnicheskaya konferentsiya “Sovremennye problemy opredeleniya orientatsii i navigatsii kosmicheskikh apparatov” (All-Russia Scientific and Technical Conf. “Modern Problems of Determining the Orientation and Navigation of Spacecraft”), Proc., Tarusa, 22–25 Sept. 2008, Moscow: IKI RAN, 2009, pp. 447–457.
  2. Belinskaya E. V., Kobeleva A. A., Smetanin P. S., Elyashev Ya. D., Chernyak M. E., Sravnenie effektov strukturnykh povrezhdenii v matritsakh KMOP i PZS, primenyaemykh v zvezdnykh datchikakh, na primere CMV4000 i FPPZ “Lev-4” (Comparison of the structural damage effects in CMOS and CCD used in star trackers by the example of CMV4000 and LEV-4 CCD), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 6, pp. 119–130, DOI: 10.21046/2070-7401-2018-15-6-119-130.
  3. Buckingham M., Shumy v elektronnykh priborakh i sistemakh (Noise in Electronic Devices and Systems), Moscow: Mir, 1986, 399 p.
  4. Gaidar G. P., Otzhig radiatsionnykh defektov v kremnii (Annealing of radiation defects in silicon), Elektronnaya obrabotka materialov, 2012, Vol. 48, No. 1, pp. 93–105.
  5. Kobeleva A. A., Elyashev Ya. D., Bessonov R. V., Kudelin M. I., Avanesov G. A., Forsh A. A., Rezul’taty ispytanii fotosensorov CMV 20000 na stoikost’ k vozdeistviyu ioniziruyushchikh izluchenii kosmicheskogo prostranstva (CMV 20000 photosensor test results for resistance to the effects of outer space ionizing radiation), 5-ya Vserossiiskaya nauchno-tekhnicheskaya konferentsiya “Sovremennye problemy opredeleniya orientatsii i navigatsii kosmicheskikh apparatov” (5th All-Russia Scientific and Technical Conf. “Modern Problems of Determining the Orientation and Navigation of Spacecraft”), Proc., Tarusa, 5–8 Sept. 2016, Moscow: IKI RAS, 2017, pp. 154–162.
  6. Lazovskii L., Pribory s zaryadovoi svyaz'yu: pretsizionnyi vzglyad na mir (Charge-coupled devices: precise view of the world), 1992, 26 p., http://www.autex.spb.ru/download/sensors/ccd.pdf.
  7. Lebedev A. I., Fizika poluprovodnikovykh priborov (Semiconductor Physics), Moscow: Fizmalit, 2008, 488 p.
  8. Neizvestnyi S. I., Nikulin O. Yu., Pribory s zaryadovoi svyaz’yu ― osnova sovremennoi televizionnoi tekhniki. Osnovnye kharakteristiki PZS (Charge coupled devices are the foundation of modern television technology. Key Features of CCD), Spetsial’naya tekhnika, 1999, No. 5, pp. 30–38.
  9. Chumakov A. I., Deistvie kosmicheskoi radiatsii na integral’nye skhemy (The effect of cosmic radiation on integrated circuits), Moscow: Radio i svyaz’, 2004, 319 p.