ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 176-187

Migration of the northern evergreen needleleaf timberline in Siberia in the 21st century

S.T. Im 1, 2, 3 , V.I. Kharuk 1, 2 , V.G. Lee 4 
1 Sukachev Institute of Forest SB RAS – subdivision of FSC KSC SB RAS, Krasnoyarsk, Russia
2 Siberian Federal University, Krasnoyarsk, Russia
3 Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russia
4 Krasnoyarsk State Agrarian University, Krasnoyarsk, Russia
Accepted: 11.02.2020
DOI: 10.21046/2070-7401-2020-17-1-176-187
An analysis of the shift of the northern boundaries of closed evergreen coniferous (EGC) stands in Siberia was carried out based on the time series of vegetation cover maps (2001–2016) obtained from MODIS satellite imagery data. The northern boundaries of the EGC for two studied periods (2001–2003 and 2014–2016) were identified. Mostly, a shift of the EGC boundary in the north direction (by ~26±2 km) was revealed. An increase in the area of the closed EGC stands (by 15–50 %) contributed to the expansion of their boundaries was not uniform depending on the relief. In Western Siberia, the increase mainly was observed at altitudes of 100–130 m above sea level, and on the Central Siberian plateau ― at 350–500 m. The EGC boundary locates in the zone of mean summer temperatures 12–15 °C. In the study area in 1970–2000s, a warming period was observed (temperatures increased by ~0.5–1.5 °C, p < 0.05). The given temperature regimes facilitated an increase of closure of the EGC stands (by ~1–3 %/year), their expansion to the north, and upward along the elevation gradient. In the zone of intensive anthropogenic impact (oil and gas fields of the Vankor cluster and the Yamalo-Nenets Autonomous Area), a shift of the EGC boundary to the south was observed.
Keywords: evergreen coniferous stands, Siberia, northern forest boundary, MODIS, climate, relief
Full text

References:

  1. Im S. T., Vliyanie razrabotki Vankorskogo neftegazovogo mestorozhdeniya na okruzhayushchuyu sredu po dannym distantsionnogo zondirovaniya i GIS (Effects of Vankor oil-gas field exploitation on the environment based on the remote sensing data and GIS), Materialy 6-go Mezhdunarodnogo nauchnogo kongressa GEO-Sibir’-2010 (Proc. 6th Intern. Scientific Congress GEO-Siberia-2010), Novosibirsk, 2010, Vol. 4, Part 1, pp. 168–170.
  2. Im S. T., Kharuk V. I., Klimaticheskie indutsirovannye izmeneniya v ekotone al’piiskoi lesotundry plato Putorana (Climate-induced changes in the alpine forest-tundra ecotone in Putorana Plateau), Issledovanie Zemli iz kosmosa, 2013, No. 5, pp. 32–44.
  3. Krylov A. M., Prostranstvenno-vremennye zakonomernosti massovogo usykhaniya elovykh nasazhdenii Moskovskoi oblasti (Spatio-temporal patterns of mortality of spruce stands in Moscow region), Stavropol: TsNZ Logos, 2018, 170 p.
  4. Lesa SSSR: Karta, 1:2 500 000 (Forests of USSR: Map. 1:2 500 000), M. G. Garsia (ed.), Soyuzgiproleskhoz, Moscow: GUGK, 1990.
  5. Malakhova E. G., Lyamtsev N. I., Rasprostranenie i struktura ochagov usykhaniya elovykh lesov Podmoskov’ya v 2010–2012 godakh (An expansion and structure of spruce forest mortality hot spots in the vicinities of Moscow during 2010–2012 years), Izvestiya Sankt-Peterburgskoi lesotekhnicheskoi akademii, 2014, No. 207, pp. 193–201.
  6. Manko Yu. I., Gladkova G. A., Massovoe usykhanie pikhtovo-elovykh lesov na rossiiskom Dal’nem vostoke: osnovnye itogi izucheniya (Mass mortality of fir-spruce stands in Far East: main conclusions of investigation), Komarovskie chteniya, 2003, No. 3, pp. 131–171.
  7. Meshkova V. L., Usykhanie sosnovykh lesov Ukrainy s uchastiem koroedov: prichiny i tendentsii (Pine forest mortality in Ukraine with participation of bark-beetles: causes and tendencies), Izvestiya Sankt-Peterburgskoi lesotekhnicheskoi akademii, 2019, No. 228, pp. 312–335.
  8. Sazonov A. A., Kukhta V. N., Blintsov A. I., Zvyagintsev V. B., Ermokhin M. V., Problema massovogo usykhaniya el’nikov Belarusi i puti ee resheniya (Problem of mass mortality of spruce in Belarus and ways to solve it), Lesnoe i okhotnich’e khozyaistvo, 2013, No. 7, pp. 10–15.
  9. Kharuk V. I., Im S. T., Ranson K. J., Naurzbaev M. M., Vremennaya dinamika listvennitsi v ekotone lesotundri (Temporal dynamics of larch in the forest-tundra ecotone), Doklady Akademii nauk, 2004, Vol. 398, No. 3, pp. 1–5.
  10. Allen C. D., Macalady A. K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., Kitzberger T., Rigling A., Breshears D. D., Hogg E. H., Gonzalez P., Fensham R., Zhang Z., Castro J., Demidova N., Lim J. H., Allard G., Running S. W., Semerci A., Cobb N., A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, Forest Ecology and Management, 2010, Vol. 259, pp. 660–684.
  11. Arhipova N., Gaitnieks T., Donis J., Stenlid J., Vasaitis R., Butt rot incidence, causal fungi, and related yield loss in Picea abies stands of Latvia, Canadian J. Forest Research, 2011, Vol. 41, pp. 2337–2345.
  12. Climate Change 2014: Impacts, Adaptation, and Vulnerability, IPCC, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Field C. B., Barros V. R., Dokken D. J., Mach K. J., Mastrandrea M. D., Bilir T. E., Chatterjee M., Ebi K. L., Estrada Y. O., Genova R. C., Girma B., Kissel E. S., Levy A. N., MacCracken S., Mastrandrea P. R., White L. L. (eds.), Geneva, Switzerland: World Meteorological Organization, 2014, 190 p.
  13. Danielson J., Gesch D., Global Multi-resolution Terrain Elevation Data 2010 (GMTED’2010), Open-File Report 2011–1073, U. S. Geological Survey, 2011, 26 p.
  14. Friedl M. A., Sulla-Menashe D., Tan B., Schneider A., Ramankutty N., Sibley A., Huang X., MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sensing of Environment, 2010, Vol. 114, pp. 168–182.
  15. Gelaro R., McCarty W., Suárez M. J., Todling R., Molod A., Takacs L., Randles C. A., Darmenov A., Bosilovich M. G., Reichle R., Wargan K., Coy L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., da Silva A. M., Gu W., Kim G., Koster R., Lucchesi R., Merkova D., Nielsen J. E., Partyka G., Pawson S., Putman W., Rienecker M., Schubert S. D., Sienkiewicz M., Zhao B., The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 2017, Vol. 30, pp. 5419–5454.
  16. Gonsamo A., Chen J. M., Circumpolar vegetation dynamics product for global change study, Remote Sensing of Environment, 2016, Vol. 182, No. 1, pp. 13–26.
  17. He Y., Huang J., Shugart H. H., Guan X., Unexpected evergreen expansion in the Siberian forest under warming hiatus, J. Climate, 2017, Vol. 30, No. 13, pp. 5021–5039.
  18. Hellmann L., Agafonov L., Ljungqvist F. C., Churakova (Sidorova) O., Düthorn E., Esper J., Hülsmann L., Kirdyanov A. V., Moiseev P., Myglan V. S., Diverse growth trends and climate responses across Eurasia’s boreal forest, Environmental Research Letters, 2016, Vol. 11, No. 7, pp. 074021.
  19. Holtmeier F.-K., Mountain Timberlines: Ecology, Patchiness, and Dynamics, London, Boston, Dordrecht: Kluwer Academic Publishers, 2013, 384 p.
  20. Hu T., Su Y., Xue B., Liu J., Zhao X., Fang J., Guo Q., Mapping global forest aboveground biomass with spaceborne LiDAR, optical imagery, and forest inventory data, Remote Sensing, 2016, Vol. 8(7), p. 565.
  21. Ju J., Masek J. G., The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data, Remote Sensing of Environment, 2016, Vol. 176, pp. 1–16.
  22. Kharuk V. I., Ranson K. J., Im S. T., Naurzbaev M. M., Forest-tundra larch forests and climatic trends, Russian J. Ecology, 2006, Vol. 37, pp. 291–298.
  23. Kharuk V. I., Ranson K. J., Dvinskaya M. L., Evidence of evergreen conifer invasion into larch dominated forests during recent decades in central Siberia, Eurasian J. Forest Research, 2007, Vol. 10, pp. 163–171.
  24. Kharuk V. I., Ranson K. J., Im S. T., Vdovin A. S., Spatial distribution and temporal dynamics of high elevation forest stands in southern Siberia, Global Ecology and Biogeography, 2010, Vol. 19, pp. 822–830.
  25. Kharuk V. I., Ranson K. J., Im S. T., Oskorbin P. A., Dvinskaya M. L., Ovchinnikov D. V., Tree-Line Structure and Dynamics at the Northern Limit of the Larch Forest: Anabar Plateau, Siberia, Russia, Arctic, Antarctic, and Alpine Research, 2013, Vol. 45, No. 4, pp. 526–537.
  26. Kharuk V., Im S., Petrov I., Dvinskaya M., Fedotova E., Ranson K., Fir Decline and Mortality in the Southern Siberian Mountains, Regional Environmental Change, 2017, Vol. 17(3), pp. 803–812.
  27. Kharuk V. I., Im S. T., Petrov I. A., Warming hiatus and evergreen conifers in Altay-Sayan Region, Siberia, J. Mountain Science, 2018, Vol. 15(12), pp. 2579–2589.
  28. Kirdyanov A. V., Hagedorn F., Knorre A. A., Fedotova E. V., Vaganov E. A., Naurzbaev M. M., Moiseev P. A., Rigling A., 20th century treeline advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia, Boreas, 2012, Vol. 41, No. 1, pp. 56–67.
  29. Liu Y. Y., Van Dijk A. I., De Jeu R. A., Canadell J. G., McCabe M. F., Evans J., Wang G., Recent reversal in loss of global terrestrial biomass, Nature Climate Change, 2015, Vol. 5(5), pp. 470–474.
  30. Mamet S. D., Brown C. D., Trant A. J., Laroque C. P., Shifting global Larix distributions: Northern expansion and southern retraction as species respond to changing climate, J. Biogeography, 2019, Vol. 46(1), pp. 30–44.
  31. Martínez-Vilalta J., Lloret F., Breshears D. D., Drought-induced forest decline: causes, scope and implication, Biology Letters, 2012, Vol. 8(5), pp. 689–691.
  32. Myers-Smith I, Hik D. S., Climate warming as a driver of tundra shrubline advance, J. Ecology, 2018, Vol. 106(2), pp. 547–560.
  33. Olthof I., Pouliot D., Treeline vegetation composition and change in Canada’s western Subarctic from AVHRR and canopy reflectance modeling, Remote Sensing of Environment, 2010, Vol. 14(4), pp. 805–815.
  34. Pflugmacher D., Krankina O. N., Cohen W. B., Friedl M. A., Sulla-Menashe D., Kennedy R. E., Nelson P., Loboda T. V., Kuemmerle T., Dyukarev E., Elsakov V., Kharuk V. I., Comparison and Assessment of Coarse Resolution Land Cover Maps for Northern Eurasia, Remote Sensing of Environment, 2011, Vol. 115, pp. 3539–3553.
  35. Running S. W., Nemani R. R., Heinsch F. A., Zhao M., Reeves M. C., Hashimoto H., A continuous satellite-derived measure of global terrestrial primary production, BioScience, 2004, Vol. 54(6), pp. 547–560.
  36. Shiyatov S. G., Mazepa V. S., Contemporary expansion of Siberian larch into the mountain tundra of the Polar Urals, Russian J. Ecology, 2015, Vol. 46, pp. 495–502.
  37. Shiyatov S. G., Terent’ev M. M., Fomin V. V., Zimmermann N. E., Altitudinal and horizontal shifts of the upper boundaries of open and closed forests in the Polar Urals in the 20th century, Russian J. Ecology, 2007, Vol. 38, No. 4, pp. 223–227.
  38. Sulla-Menashe D., Gray J. M., Abercrombie S. P., Friedl M. A., Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product, Remote Sensing of Environment, 2019, Vol. 222, pp. 183–194.
  39. Urban M., Forkel M., Eberle J., Hüttich C., Schmullius C., Herold M., Pan-Arctic Climate and Land Cover Trends Derived from Multi-Variate and Multi-Scale Analyses (1981–2012), Remote Sensing, 2014, Vol. 6, pp. 2296–2316.
  40. Yan K., Park T., Yan G., Chen C., Yang B., Liu Z., Nemani R. R., Knyazikhin Y., Myneni R. B., Evaluation of MODIS LAI/FPAR product collection 6. Part 1: consistency and improvements, Remote Sensing, 2016, Vol. 8(5), p. 359.