ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 150-163

Use of photogrammetric point clouds for the analysis and mapping of structural variables in sparse northern boreal forests

A.A. Medvedev 1 , N.O. Telnova 1 , A.V. Kudikov 1 , N.A. Alekseenko 1 
1 Institute of Geography RAS, Moscow, Russia
Accepted: 21.01.2020
DOI: 10.21046/2070-7401-2020-17-1-150-163
The paper considers the methods of acquisition and processing of optical data from small Unmanned Air Vehicles (UAVs) ― photogrammetric point clouds and derivative 3d-models — for the automatic extraction of explicit structure variables in sparse boreal forests of the central part of Kola Peninsula. We review main technological issues of UAV optical surveys, present flowcharts of point clouds classification for the extraction of canopy height model (CHM), further CHM analysis, tree-level and area-based estimation of structural forest variables. Main tree-level variables are crown heights and extent; for forest stands CHM analysis leads to gridded data on tree canopy heights, amount of canopy peaks and tree density, share of tree cover. The definite limitations of optical photogrammetry connected with CHM extraction in dense forests can be partly overcome due to the complex use of point clouds from summer and winter (leaf-off) surveys and independent processing flow of CHM in forest stands with sparser and denser tree canopies.
Keywords: 3d-structure of forest stands, forest stands, canopy height models, density of tree canopy, photogrammetric point clouds, UAVs
Full text

References:

  1. Aleshko R. A., Alekseeva A. A., Shoshina K. V., Bogdanov A. P., Guriev A. T., Razrabotka metodiki aktualizatsii informatsii o lesnom uchastke s ispol’zovaniem snimkov so sputnikov i malykh BPLA (Development of the methodology to update the information on a forest area using satellite imagery and small UAVs), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 87–89.
  2. Lesnoi plan Murmanskoi oblasti. Skhema raspredeleniya lesov po preobladayushchim porodam i gruppam vozrasta (Forest plan of Murmansk region. Scheme of forest distribution by dominant species and age classes), 2009, available at: https://mpr.gov-murman.ru/documents/lesplan/ (accessed 07.12.2019).
  3. Medvedev A. A., Alekseenko N. A., Perspektivy primeneniya bespilotnykh letatel’nykh apparatov dlya tematicheskogo krupnomasshtabnogo kartografirovaniya (Perspectives for the use of unmanned aerial vehicles (UAV) for large-scale thematic mapping), Voprosy geografii, 2017, Vol. 144, pp. 408–426.
  4. Agisoft Metashape User Manual: Professional Edition. Version 1.5, 2019, URL: https://www.agisoft.com/pdf/metashape-pro_1_5_ru.pdf.
  5. Sannikov P. Yu., Andreev D. N., Buzmakov S. A., Vyyavlenie i analiz sukhostoya pri pomoshchi bespilotnogo letatel’nogo apparata (Identification and analysis of deadwood using an unmanned aerial vehicle), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 103–113.
  6. Alexander C., Korstjens A. H., Hankinson E., Usher G., Harrison N., Nowak M. G., Abdullah A., Wich S. A., Hill R. A., Locating emergent trees in a tropical rainforest using data from an Unmanned Aerial Vehicle (UAV), Intern. J. Applied Earth Observation and Geoinformation, 2018, Vol. 72, pp. 86–90.
  7. Bohlin J., Wallerman J., Fransson J. E. S., Deciduous forest mapping using change detection of multi-temporal canopy height models from aerial images acquired at leaf-on and leaf-off conditions, Scandinavian J. Forest Research, 2016, Vol. 31, No. 5, pp. 517–525.
  8. Dandois J. P., Ellis E. C., High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision, Remote Sensing of Environment, 2013, Vol. 136, pp. 259–276.
  9. Giannetti F., Chirici G., Gobakken T., Næsset E., Travaglini D., Puliti S., A new approach with DTM-independent metrics for forest growing stock prediction using UAV photogrammetric data, Remote Sensing of Environment, 2018, Vol. 213, pp. 195–205.
  10. Gobakken T., Korhonen L., Næsset E., Laser-assisted selection of field plots for an area-based forest inventory, Silva Fennica, 2013, Vol. 47, No. 5, Article ID 943, pp. 1–20.
  11. Goodbody T. R. H., Coops N. C., White J. C., Digital aerial photogrammetry for updating area-based forest inventories: a review of opportunities, challenges, and future directions, Current Forestry Reports, 2019, Vol. 5, No. 2, pp. 55–75.
  12. Granholm A.-H., Olsson H., Nilsson M., Allard A., Holmgren J., The potential of digital surface models based on aerial images for automated vegetation mapping, Intern. J. Remote Sensing, 2015, Vol. 36, No. 7, pp. 1855–1870.
  13. Lisein J., Pierrot-Deseilligny M., Bonnet S., Lejeune P., A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery, Forests, 2013, Vol. 4, No. 4, pp. 922–944.
  14. Mohan M., Silva C. A., Klauberg C., Jat P., Catts G., Cardil A., Hudak A. T., Dia M., Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest, Forests, 2017, Vol. 8, No. 9, Article ID 340, pp. 1–17.
  15. Næsset E., Determination of mean tree height of forest stands by digital photogrammetry, Scandinavian J. Forest Research, 2002, Vol. 17, No. 5, pp. 446–459.
  16. Ni W., Sun G., Pang Y., Zhang Z., Liu J., Yang A., Wang Y., Zhang D., Mapping three-dimensional structures of forest canopy using UAV stereo imagery: evaluating impacts of forward overlaps and image resolutions with LIDAR data as reference, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2018, Vol. 11, No. 10, pp. 3578–3589.
  17. Puliti S., Ene L. T., Gobakken T., Næsset E., Use of partial-coverage UAV data in sampling for large scale forest inventories, Remote Sensing of Environment, 2017, Vol. 194, pp. 115–126.
  18. Puliti S., Saarela S., Gobakken T., Ståhl G., Næsset E., Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference, Remote Sensing of Environment, 2018, Vol. 204, pp. 485–497.
  19. Tang L., Shao G., Drone remote sensing for forestry research and practices, J. Forestry Research, 2015, Vol. 26, No. 4, pp. 791–797.
  20. Tanhuanpää T., Saarinen N., Kankare V., Nurminen K., Vastaranta M., Honkavaara E., Karjalainen M., Yu X., Holopainen M., Hyyppä J., Evaluating the performance of high-altitude aerial image-based digital surface models in detecting individual tree crowns in mature boreal forests, Forests, 2016, Vol. 7, No. 7, Article ID 143, pp. 1–17.
  21. Tuominen S., Balazs A., Saari H., Pölönen I., Sarkeala J., Viitala R., Unmanned aerial system imagery and photogrammetric canopy height data in area-based estimation of forest variables, Silva Fennica, 2015, Vol. 49, No. 5, Article ID 1348, pp. 1–19.
  22. White J. C., Coops N. C., Wulder M. A., Vastaranta M., Hilker T., Tompalski P., Remote Sensing Technologies for Enhancing Forest Inventories: A Review, Canadian J. Remote Sensing, 2016, Vol. 42, No. 5, pp. 619–641.
  23. Zhang J., Hu J., Lian J., Fan Z., Ouyang X., Ye W., Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring, Biological Conservation, 2016, Vol. 198, pp. 60–69.