ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 59-67

New assessment of linear instrumental ground resolution of Earth remote sensing spacecraft for perfect design of its optoelectronic equipment

K.N. Sviridov 1 , A.E. Tyulin 1 , S.A. Pulinets 1, 2 
1 Russian Space Systems JSC, Moscow, Russia
2 Space Research Institute RAS, Moscow, Russia
Accepted: 23.01.2020
DOI: 10.21046/2070-7401-2020-17-1-59-67
The paper is devoted to perfect designing of optic electronic equipment (OEE) for Earth remote sensing spacecraft (ERS SC) based on criteria for assessing the limit instrumental ground resolution of ERS SC. Two criteria are considered: the well-known international criterion for assessing geometric resolution ― Ground Sample Distance (GSD-criterion) and a new domestic criterion for assessing linear resolution proposed by Russian Space Systems (RSS-criterion). Results of using these two criteria were compared while designing their OEE. It was found that using GSD criterion is incorrect for designing Nyquist-matched (perfect) OEE. The OEE that does not match the Nyquist criterion reduces instrumental ground resolution of ERS SC and leads to unjustified financial losses for the customer to create a lens with a larger diameter. The paper suggests that the RSS-criterion, which is free from the disadvantages and limitations of the GSD-criterion, should be used to design OEE. Application of RSS-criterion will provide agreement of the designed OEE to the Nyquist criterion and ensure, in operation as a part of ERS SC, the possibility to achieve the diffraction limit of the linear ground resolution while compensating atmospheric distortions and using less diameter lenses with acceptable cost characteristics. This economy will in its turn make it possible to essentially increase Russian small ERS SC grouping which is necessary to improve the quality of natural and man-made disasters monitoring and forecasting. The paper gives an example of perfect OEE designing based on the RSS-criterion and its implementation under the actual usage conditions aboard small ERS SC using new technologies of distortion compensation while collecting and processing ERS images.
Keywords: geometric resolution ― GSD-criterion, linear resolution ― RSS-criterion, diffraction resolution, Nyquist criterion, perfect projecting of OEE for ERS SC, compensation of atmosphere distortions
Full text

References:

  1. Alekseev O. A., Razumova N. V., Tsadikovsky E. I., Linkov A. D., Rassmotrenie metodologii postroeniya kosmicheskoi gruppirovki monitoringa dlya prognozirovaniya chrezvychainykh situatsii prirodnogo i tekhnogennogo proiskhozhdeniya (Considering the methodology of building space monitoring constellation for forecasting natural and anthropogenic emergencies), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 5, pp. 29–38.
  2. Zamshin V. V., Metody opredeleniya lineinoi razreshayushchei sposobnosti opticheskikh i radiolokatsionnykh aerokosmicheskikh izobrazhenii (Methods to define resolution capability of optical and radar location images), Izvestiya vysshikh uchebnykh zavedenii. Geodeziya i aerofotosʺemka, 2014, No. 1, pp. 43–47.
  3. Kirilin A. N., Akhmetov R. N., Stratilatov N. R., Baklanov A. I., Fedotov V. M., Novikov N. V., Kosmicheskii apparat “Resurs-P” (Spacecraft “Resurs-P”), Geomatika, 2010, No. 4, pp. 23–26.
  4. Lavrov V. V., Kosmicheskie sʺemochnye sistemy sverkhvysokogo razresheniya (Space picture-taking systems of ultrahigh resolution), Geoinformatsionnyi portal GIS-Assotsiatsii, 2010, No. 2, pp. 19–23.
  5. Pulinets S. A., Uzunov D. P., Davidenko D. V., Dudkin S. A., Tsadikovskii E. I., Prognoz zemletryasenii vozmozhen?! (Is earthquake forecasting possible?!), Moscow: Trovant, 2014, 144 p.
  6. Sviridov K. N., Opticheskaya lokatsiya kosmicheskogo musora (Optic location of space debris), Moscow: Znanie, 2006, 488 p.
  7. Sviridov K. N., O predel’nom instrumental’nom razreshenii kosmicheskogo apparata “Resurs-P” (No. 1, 2, 3) (About limiting instrumental resolution of spacecraft “Resurs-P” (No. 1, 2, 3)), Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy, 2017, Vol. 4, Issue 2, pp. 20–28.
  8. Sviridov K. N., Tyulin A. E. (2018a), O kriteriyakh otsenki predel’nogo instrumental’nogo razresheniya kosmicheskogo apparata distantsionnogo zondirovaniya Zemli na mestnosti (About estimation criteria of limiting instrumental resolution of Earth remote sensing spacecraft on the terrain), Informatsiya i Kosmos, 2018, No. 3, pp. 143–147.
  9. Sviridov K. N., Tyulin A. E. (2018b), O proektirovanii optiko-elektronnoi apparatury kosmicheskikh apparatov distantsionnogo zondirovaniya Zemli (About engineering electrooptical equipment for Earth remote sensing spacecraft), Informatsiya i Kosmos, 2018, No. 4, pp. 136–142.
  10. Sviridov K. N., Tyulin A. E., Novaya tekhnologiya otsenki i maksimizatsii predel’nogo instrumental’nogo razresheniya kosmicheskikh apparatov distantsionnogo zondirovaniya Zemli (A New technology to estimate and maximize limiting instrumental resolution of Earth remote sensing spacecraft), Informatsiya i Kosmos, 2019, No. 2, pp. 118–124.
  11. Sviridov K. N., Tyulin A. E., Volkov S. A. (2019a), Real’noe instrumental’noe razreshenie na mestnosti zarubezhnykh kosmicheskikh apparatov distantsionnogo zondirovaniya Zemli sverkhvysokogo razresheniya (Real instrumental resolution of foreign Earth remote sensing spacecraft of ultrahigh resolution on the terrain), Informatsiya i Kosmos, 2019, No. 1, pp. 150–156.
  12. Sviridov K. N., Tyulin A. E., Gektin Yu. M. (2019b), Sposob polucheniya i obrabotki iskazhennykh atmosferoi izobrazhenii distantsionnogo zondirovaniya Zemli dlya malykh kosmicheskikh apparatov (Method of acquisition and processing of Earth remote sensing images disfigured by the atmosphere for the small spacecraft), Patent application RU 2019131343 dated 04.10.2019, applicant AO “Rossiiskie kosmicheskie sistemy”.
  13. Tyulin A. E., Sviridov K. N., Sposob otsenki i maksimizatsii predel’nogo instrumental’nogo razresheniya kosmicheskogo apparata distantsionnogo zondirovaniya Zemli na mestnosti (Method of estimation and maximization of limiting instrumental resolution of Earth remote sensing spacecraft on the terrain), Patent RU 2669262, Reg. 09.10.2018.
  14. Uezerell U., Otsenka kachestva izobrazheniya. Proektirovanie opticheskikh system (Estimating image quality. Optic systems projecting), R. Shennon, Dzh. Vaiant (eds.), Moscow: Mir, 1983, 431 p.
  15. Khmelevskoi S. I., Tendentsii v razvitii tsifrovykh aerosʺemochnykh sistem. Kriterii sravneniya i otsenki (Trends in development of digital aerospace systems. Criteria of comparison and estimation), Geoprofi, 2011, No. 1, pp. 11–16.