ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 223-233

Mesoscale polar cyclone from satellite data and results of numerical simulation

V.V. Efimov 1 , D.A. Yarovaya 1 , O.I. Komarovskaya 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 02.12.2019
DOI: 10.21046/2070-7401-2020-17-1-223-233
A mesoscale polar cyclone observed in the Arctic region for more than 2 days between 18 and 20 January 2017 is investigated. The cyclone originated north of Iceland and traveled more than 2,000 km from its origin to the Barents Sea. Satellite data on driving wind fields, sea surface temperature, sensible and latent heat fluxes from the sea surface as well as reanalysis data of ERA5 are considered. It is concluded that the strengthening of the cyclone is connected with a cold invasion on January 19–20 in the area of Is. Spitsbergen. The cyclone is reproduced using the polar version of the WRF numerical atmospheric circulation model. According to the results of simulation the trajectory of the cyclone is constructed, the wind and temperature fields in the developed cyclone are described. It is shown that even at the stage of its greatest development, the cyclone was a shallow near-surface vortex with a warm core formed as a result of vertical circulation. The values of heat fluxes in this cyclone are compared with the characteristic values in a tropical hurricane. To estimate the rate of decay of the cyclone, a numerical experiment with the shutdown of heat generation during condensation of water vapor in convective flows is carried out and described.
Keywords: polar mesoscale cyclone, mesoscale atmospheric simulation, satellite data analysis
Full text

References:

  1. Efimov V. V., Yarovaya D. A., Chislennoe modelirovanie kvazidvumernykh vikhrei v atmosfere nad Chernym morem (Numerical simulation of quasi-two-dimensional vortices in the atmosphere over the Black sea), Izvestiya Rossiiskoi akademii nauk. Fizika atmosfery i okeana, 2013, Vol. 49, No. 2, pp. 223–249.
  2. Yarovaya D. A., Efimov V. V., Mezomasshtabnye tsiklonicheskie vikhri nad Chernym morem (Mesoscale cyclonic vortices over the Black sea), Meteorologiya i gidrologiya, 2014, No. 6, pp. 28–39.
  3. Charney J., Eliassen A., On the growth of the hurricane depression, J. Atmospheric Science, 1964, Vol. 21, pp. 68–75.
  4. Cione J. J., Black P. G., Houston S. H., Surface observations in the hurricane environment, Monthly Weather Review, 2000, Vol. 128, pp. 1550–1561.
  5. Craig G. C., Gray S. L., CISK or WISHE as the mechanism for tropical cyclone intensification, J. Atmospheric Science, 1996, Vol. 53, pp. 3528–3540.
  6. Emanuel K. A., An air-sea interaction theory for tropical cyclones. Part I: steady-state maintenance, J. Atmospheric Science, 1986, Vol. 43, pp. 585–604.
  7. Emanuel K. A., Rotunno R., Polar lows as arctic hurricanes, Tellus Series A: Dynamic Meteorology and Oceanography, 1989, Vol. 41, pp. 1–17, DOI: 10.1111/j.1600-0870.1989.tb00362.x.
  8. Føre I., Kristjánsson J. E., Saetra Ø., Breivik Ø., Røsting B., Shapiro M., The full life cycle of a polar low over the Norwegian Sea observed by three research aircraft flights, Quarterly J. Royal Meteorological Society, 2011, Vol. 137, pp. 1659–1673.
  9. Føre I., Kristjánsson J. E., Kolstad E. W., Bracegirdle T. J., Saetrae Ø., Røstinge B., A ‘hurricane-like’ polar low fuelled by sensible heat flux: high-resolution numerical simulations, Quarterly J. Royal Meteorological Society, 2012, Vol. 138, pp. 1308–1324.
  10. Linders T., Saetra Ø., Can CAPE maintain polar lows? J. Atmospheric Science, 2010, Vol. 67, pp. 2559–2571.
  11. Michel C., Terpstra A., Spengler T., Polar mesoscale cyclone climatology for the Nordic Seas based on ERA-Interim, J. Climate, 2018, Vol. 31, pp. 2511–2532.
  12. Noer G., Saetra Ø., Lien T., Gusdal Y., A climatological study of polar lows in the Nordic Seas, Quarterly J. Royal Meteorological Society, 2011, Vol. 137, pp. 1762–1772.
  13. Rasmussen E., The polar low as an extratropical CISK disturbance, Quarterly J. Royal Meteorological Society, 1979, Vol. 105, pp. 531–549.
  14. Rasmussen E., A case study of a polar low development over the Barents Sea, Tellus Series A: Dynamic Meteorology and Oceanography, 1985, Vol. 37, pp. 407–418.
  15. Rasmussen E., Turner J., Polar lows. Mesoscale Weather Systems in the Polar Regions, Cambridge University Press, 2003, 612 p.
  16. Rasmussen E. A., Pedersen T. S., Pedersen L. T., Turner J., Polar lows and arctic instability lows in the Bear Island region, Tellus Series A: Dynamic Meteorology and Oceanography, 1992, Vol. 44, pp. 133–154.
  17. Rojo M., Claud C., Mallet P.-E., Noer G., Carleton A. M., Vicomte M., Polar low tracks over the Nordic Seas: a 14-winter climatic analysis, Tellus Series A: Dynamic Meteorology and Oceanography, 2015, Vol. 67, DOI: 10.3402/tellusa.v67.24660.
  18. Skamarock W. C., Klemp J. B., Dudhia J., Gill D. O., Barker D., Duda M. G., Huang X.-Y., Wang W., Powers J. G., A description of the Advanced Research WRF version 3, NCAR/TN-475+STR, University Corporation for Atmospheric Research, 2008, 125 p., DOI: 10.5065/D68S4MVH.