ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 128-138

Diagnostics of water availability for agricultural crops in Xinjiang (China) in 2003–2019 based on eMODIS NDVI C6 data

A.G. Terekhov 1, 2 , N.N. Abayev 2, 3 , E.I. Lagutin 4 
1 Institute of Information and Computing Technologies MES, Almaty, Kazakhstan
2 RSE Kazhydromet, Almaty, Kazakhstan
3 al-Farabi Kazakh National University, Almaty, Kazakhstan
4 Institute of Water Problems and Ecology, Taras, Kazakhstan
Accepted: 02.12.2019
DOI: 10.21046/2070-7401-2020-17-1-128-138
This research is dedicated to the evaluation of water supply in agricultural areas of the Xinjiang Uyghur Autonomous Region, People’s Republic of China (XUAR PRC) for the last 17 years between 2003 and 2019. In summer there is no natural vegetation in the arid climate in XUAR PRC. Mostly, this territory’s water is supplied by transboundary (Kazakhstan ― China) rivers: Ili and Black Irtysh. Cropping in XUAR PRC is based on irrigated agriculture which is the most significant consumer of river water resources. The NDVI values reflect the agricultural vegetation state that ultimately depends on the moisture regime of the root-inhabited soil layer. Thus, the seasonal NDVI maximum of the agricultural regions is directly related to the share of the cropland and soil moisture regimes. We used the long-term dynamics of the average NDVI values (first 10 days of July) for twelve agricultural zones of the XUAR located on the Dzungar and Kashgar plains and in the Ili River Valley (China’s section). The product e-MODIS NDVI FEWS NET (Early Warning and Environmental Monitoring Program) with ten days renewal and resolution 250 m was used. It was obtained that during 2003–2019, for the agricultural areas of Dzungar and the Kashgar plains NDVI increased mainly because of cropping expansion. The water-abundant region of River Ili Valley and the basin of the River Khaidyk-Gol demonstrated insignificant NDVI increases because there was no additional land suitable for cropping. The sustainability of water availability in the Dzhungar Plain agricultural region was estimated from NDVI dynamics of mouth zones of rivers Bolo-Tala, Kuitun and Manas. There were no negative NDVI trends which indicates stability in the river outflows from the agricultural zones. Therefore, we can ascertain the sustainability of water supply for the Dzungar Plain cropping and good potential for further development.
Keywords: remote sensing, long-term NDVI monitoring, dynamic temporally smoothed NDVI, transboundary River Ili basin, Dzungar Plain, Kashgar Plain, irrigated cropping
Full text

References:

  1. Muzylev E. L., Startseva Z. P., Zeyliger A. M., Ermolaeva O. S., Volkova E. V., Vasilenko E. V., Osipov A. I., Ispol’zovanie sputnikovykh dannykh o kharakteristikakh podstilayushchei poverkhnosti i meteorologicheskikh kharakteristikakh pri modelirovanii vodnogo i teplovogo rezhimov bol’shogo sel’skokhozyaistvennogo regiona (The use of satellite data on land surface and meteorological characteristics in modeling the water and heat regimes of large agricultural region), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 44–60, DOI: 10.21046/2070-7401-2019-16-3-44-60.
  2. Pisman T. I., Botvich I. Yu., Shevyrnogov A. P., Otsenka sostoyaniya lesnoi rastitel’nosti Krasnoyarskogo kraya (zapovednik “Stolby”) po sputnikovym dannym (Assessment of the state of forest vegetation in Krasnoyarsk Territory (Stolby Nature Reserve) according to satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 5, pp. 130–140, DOI: 10.21046/2070-7401-2018-15-5-130-140.
  3. Rysbekov Yu. Kh., Rysbekov A. Yu., Upravlenie vodnymi resursami v Kitae (Water resources management in China), Informatsionnyi sbornik NITs MKVK, 2014, No. 41, 80 p., available at: http://www.cawater-info.net/library/rus/inf/41.pdf.
  4. Sbornik protokolov zasedanii Kazakhstansko-Kitaiskoi sovmestnoi komissii po ispol’zovaniyu i okhrane transgranichnykh rek (2001–2008 gg.) (Collection of minutes of meetings of the Kazakh-Chinese joint Commission on the use and protection of transboundary rivers), 2008, 47 p., available at: http://www.cawater-info.net/library/rus/protokols_kaz-china.pdf.
  5. Terekhin E. A., Analiz mnogoletnei dinamiki vegetatsionnogo indeksa dlya posevnykh ploshchadei sputnikovoi informatsii (Analysis of vegetation index long-term dynamics for crop areas), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 6, pp. 48–58.
  6. Terekhov A. G., Tekhnicheskie kharakteristiki vodnogo kanala Kara-Ertis – Karamai: sputnikovye otsenki (Technical characteristics of the Kara-Ertis – Karamay water canal: satellite estimations), Gidrometeorologiya i ekologiya, 2017, Vol. 87, No. 4, pp. 54–62.
  7. Terekhov A. G. (2018a), Tekhnicheskie kharakteristiki vodnogo kanala Kara-Ertis – Urumchi: sputnikovye otsenki (Technical characteristics of the Kara-Ertis – Urumqi water canal: satellite estimations), Gidrometeorologiya i ekologiya, 2018, Vol. 91, No. 4, pp. 63–74.
  8. Terekhov A. G. (2018b), Monitoring ozera Manas (KNR) v period 1989–2017 godov po sputnikovym dannym LANDSAT (Monitorig of lake Manas (CHINA) during the period 1989–2017 using LANDSAT satellite data), Gidrometeorologiya i ekologiya, 2018, Vol. 89, No. 2, pp. 63–72.
  9. Terekhov A., Kalimoldaev M., Park I., Dogikh S., Ekspansiya agrolandshafta i sostoyanie osnovnykh vodnykh obʺektov na territorii Sin’tszyan-Uigurskogo avtonomnogo raiona (basseiny reki Ile i ozera Ebi-Nur) po dannym sputnikovoi sʺemki 1990–2017 gg. (Expansion of agro-landscape and the state of the main water objects in the territory of the SUAR CHINA (basins of river Ile and lake Ebi-Nur) during 1990–2017 on base of satellite data), In: Novye metody i rezul’taty issledovanii landshaftov v Evrope, Tsentral’noi Azii i Sibiri (Novel Methods and Results of Landscape Research in Europe, Central Asia and Siberia), V. G. Sychev, L. Mueller (eds.), Moscow: Izd. FGBNU “VNII agrokhimii”, 2018, Vol. 3, pp. 219–223.
  10. Yarovaya pshenitsa v Severnom Kazakhstane (Spring wheat in Northern Kazakhstan), Baraev A. I. (ed.), Alma-Ata: Izd. Kainar, 1976, 232 p.
  11. Aguilar C., Zinnert J., Polo M. J., Young D., NDVI as an indicator for changes in water availability to woody, Ecological Indicators, 2012, Vol. 23, pp. 290–300, DOI: 10.1016/j.ecolind.2012.04.008.
  12. Dalezios N. R., Spyropoulos N., Dercas N., Psomiadis E., Remotely Sensed Methodologies for Crop Water Availability and Requirements in Precision Farming of Vulnerable Agriculture, Water Resources Management, 2019, Vol. 33, No. 4, pp. 1499–1519, DOI: 10.1007/s11269-018-2161-8.
  13. Climatological Atlas of the People’s Republic of China, Beijing: China Meteorological Press, 250 p.
  14. Muthuwatta L., Ahmad M., Bos M. G., Rientjes T. H. M., Assessment of water availability and consumption in the Karkheh River Basin, Iran ― Using Remote Sensing and Geo-statistics, Water Resources Management, 2009, Vol. 24, No. 3, pp. 459–484, DOI: 10.1007/s11269-009-9455-9.
  15. PetroChina Xinjiang Oilfield Emission Reduction and Afforestation Project UNFCCC/CCNUCC, 2012, available at: https://cdm.unfccc.int/Projects/Validation/DB/Y8JYE4VLYVRA7CQHVLCMMGGRH4ICZY/view.html. (accessed 20.01.2020).
  16. Spivak L., Vitkovskaya I., Batyrbayeva M., Terekhov A., The experience of land cover change detection by satellite data, Frontiers of Earth Science, 2012, Vol. 6, No. 2, pp. 140–146, DOI: 10.1007/s11707-012-0317-z.
  17. Swets D., Bradley C. R., Rowland J., Marko S. E., A weighted least-squares approach to temporal NDVI smoothing, 1999, available at: https://pubs.er.usgs.gov/publication/70201050 (accessed 22.07.2019).