ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 60-71

Some regularities of gradient parameters of GNSS tropospheric delay in Europe

V.V. Kalinnikov 1, 2 , O.G. Khutorova 1 
1 Kazan (Volga Region) Federal University, Kazan, Russia
2 Innopolis University, Innopolis, Russia
Accepted: 01.11.2019
DOI: 10.21046/2070-7401-2019-16-6-60-71
The paper considers gradient parameters of tropospheric delays derived from the data of GNSS stations in Europe. It is established that the horizontal scale of the gradient parameters is about 50 km. A simple linear empirical model of the form ∂ZTD/∂l = a•G + b between the gradient of ZTD and the gradient parameter G gives a stable value a ≈ 0.21 km-1 at the annual level. In turn, the values of the coefficient b are of the order of 0.01 mm/km and apparently reflect the systematic errors in the estimates of tropospheric products. The vector of the gradient parameter in Europe usually points to south-east. Seasonal variations of the northern and eastern components of the gradient parameter are maximal in summer and minimal in winter. On average in Europe the hydrostatic component is about 34 % of total gradient parameter in summer and 59 % in winter. The vector of the hydrostatic component is turned on the average to the left relative to the vector of the total gradient parameter by 10 degrees in summer and 18 degrees in winter. Seasonal variations of the hydrostatic components in the northern and eastern directions are 33 and 28 % in summer and 88 and 69 % in winter relative to the corresponding components of total gradient parameter variations.
Keywords: GNSS, tropospheric delay, gradients
Full text


  1. Ahn Y. W., Kim D., Dare P., Positioning impacts from imbalanced atmospheric GPS network errors, Proc. 20 th Intern. Technical Meeting of the Satellite Division of the Institute of Navigation, Fort Worth, TX, USA, 2007, pp. 2302–2312.
  2. Aonashi K., Shoji Y., Ichikawa R., Hanado K., Estimation of PWC gradients over the Kanto Plain using GPS data: Validation and possible meteorological implications, Earth Planets and Space, 2000, Vol. 52, pp. 907–912, DOI: 10.1186/BF03352304.
  3. Bar-Sever Y. E., Kroger P. M., Borjesson J. A., Estimating horizontal gradients of tropospheric path delay with a single GPS receiver, J. Geophysical Research: Solid Earth, 1998, Vol. 103, pp. 5019–5035, DOI: 10.1029/97JB03534.
  4. Bevis M., Businger S., Chiswell S., Herring T. A., Anthes R. A., Rocken C., Ware R. H., GPS meteorology: mapping zenith wet delays onto precipitable water, J. Applied Meteorology, 1994, Vol. 33, pp. 379–386, DOI: 10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2.
  5. Boehm J., Schuh H., Troposphere gradients from the ECMWF in VLBI analysis, J. Geodesy, 2007, Vol. 81, pp. 403–408, DOI: 10.1007/s00190-007-0144-2.
  6. Chen G., Herring T. A., Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data, J. Geophysical Research: Solid Earth, 1997, Vol. 102, pp. 20489–20502, DOI: 10.1029/97JB01739.
  7. Dee D. P., Uppala S. M., Simmons A. J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M. A., Balsamo G., Bauer P., Bechtold P., Beljaars A. C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A. J., Haimberger L., Healy S. B., Hersbach H., Holm E. V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A. P., Monge-Sanz B. M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thepaut J.-N., Vitart F., The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quarterly J. Royal Meteorological Society, 2011, Vol. 137, pp. 553–597, DOI: 10.1002/qj.828.
  8. Douša J., Vaclavovic P., Elias M., Tropospheric products of the second GOP European GNSS reprocessing (1996–2014), Atmospheric Measurement Techniques, 2017, Vol. 10, pp. 3589–3607, DOI: 10.5194/amt-10-3589-2017.
  9. Elsobeiey M., El-Diasty M., Impact of Tropospheric Delay Gradients on Total Tropospheric Delay and Precise Point Positioning, Intern. J. Geosciences, 2016, Vol. 7, pp. 645–654, DOI: 10.4236/ijg.2016.75050.
  10. Guerova G., Jones J., Douša J., Dick G., de Haan S., Pottiaux E., Bock O., Pacione R., Elgered G., Vedel H., Bender M., Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe, Atmospheric Measurement Techniques, 2016, Vol. 9, pp. 5385–5406, DOI: 10.5194/amt-9-5385-2016.
  11. Kačmařík M., Douša J., Dick G., Zus F., Brenot H., Möller G., Pottiaux E., Kapłon J., Hordyniec P., Václavovic P., Morel L., Inter-technique validation of tropospheric slant total delays, Atmospheric Measurement Techniques, 2017, Vol. 10, pp. 2183–2208, DOI: 10.5194/amt-10-2183-2017.
  12. Kalinnikov V. V., Khutorova O. G., Teptin G. M., Influence nonuniformity of the atmospheric water vapor field on the phase measurements of radio signals from global navigation satellite systems, Radiophysics and Quantum Electronics, 2013, Vol. 56, pp. 88–94, DOI: 10.1007/s11141-013-9418-0.
  13. Landskron D., Böhm J., Refined discrete and empirical horizontal gradients in VLBI analysis, J. Geodesy, 2018, Vol. 92, pp. 1387–1399. DOI: 10.1007/s00190-018-1127-1.
  14. Li X., Zus F., Lu C., Dick G., Ning T., Ge M., Wickert J., Schuh H., Retrieving of atmospheric parameters from multi-GNSS in real time: Validation with water vapor radiometer and numerical weather model, J. Geophysical Research. Atmospheres, 2015, Vol. 120, pp. 7189–7204, DOI: 10.1002/2015JD023454.
  15. Lu C., Li X., Li Z., Heinkelmann R., Nilsson T., Dick G., Ge M., Schuh H., GNSS tropospheric gradients with high temporal resolution and their effect on precise positioning, J. Geophysical Research. Atmospheres, 2016, Vol. 121, pp. 912–930, DOI: 10.1002/2015JD024255.
  16. Masoumi S., McClusky S., Koulali A., Tregoning P., A directional model of tropospheric horizontal gradients in Global Positioning System and its application for particular weather scenarios, Geophysical Research. Atmospheres, 2017, Vol. 122, pp. 4401–4425, DOI: 10.1002/2016JD026184.
  17. Matveev L. T., Fundamentals of general meteorology: physics of the atmosphere, Jerusalem, Israel: Program for Scientific Translations, 1967, 699 p.
  18. Meindl M., Schaer S., Hugentobler U., Beutler G., Tropospheric gradient estimation at CODE: Results from global solutions, J. Meteorological Society of Japan, 2004, Vol. 82, pp. 331–338, DOI: 10.2151/jmsj.2004.331.
  19. Miyazaki S., Iwabuchi T., Heki K., Naito I., An impact of estimating tropospheric delay gradients on precise positioning in the summer using the Japanese nationwide GPS array, J. Geophysical Research: Solid Earth, 2003, Vol. 108, pp. 335–2351, DOI: 10.1029/2000JB000113.
  20. Morel L., Pottiaux E., Durand F., Fund F., Boniface K., de Oliveira P.-S., Van Baelen J., Validity and behaviour of tropospheric gradients estimated by GPS in Corsica, Advances in Space Research, 2015, Vol. 55, pp. 135–149, DOI: 10.1016/j.asr.2014.10.004.
  21. Niell A., Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophysical Research: Solid Earth, 1996, Vol. 101, pp. 3227–3246, DOI: 10.1029/95JB03048.
  22. Saastamioinen J., Contributions to then theory atmospheric refraction. Part II. Refraction corrections in satellite Geodesy, Bull. Géodésique, 1973, Vol. 107, pp. 13–34, DOI: 10.1007/BF02522083.
  23. Steinke S., Eikenberg S., Löhnert U., Dick G., Klocke D., Di Girolamo P., Crewell S., Assessment of small-scale integrated water vapour variability during HOPE, Atmospheric Chemistry and Physics, 2015. Vol. 15, pp. 2675–2692, DOI: 10.5194/acp-15-2675-2015.
  24. Virolainen Y. A., Timofeyev Y. M., Kostsov V. S., Ionov D. V., Kalinnikov V. V., Makarova M. V., Pobe­rovsky A. V., Zaitsev N. A., Imhasin H. H., Polyakov A. V., Schneider M., Hase F., Barthlott S., Blumen­stock T., Quality assessment of integrated water vapour measurements at the St. Petersburg site, Russia: FTIR vs. MW and GPS techniques, Atmospheric Measurement Techniques, 2017, Vol. 10, pp. 4521–4536, DOI: 10.5194/amt-10-4521-2017.
  25. Xu G., GPS. Theory, algorithms and applications, Berlin: Springer, 2007, 340 p., DOI: 10.1007/978-3-540-72715-6.
  26. Xu Y., Jiang N., Xu G., Yang Y., Schuh H., Influence of meteorological data and horizontal gradient of tropospheric model on precise point positioning, Advances in Space Research, 2015, Vol. 56, pp. 2374–2383.
  27. Zhou F., Li X., Li W., Chen W., Dong D., Wickert J., Schuh H., The Impact of Estimating High-Resolution Tropospheric Gradients on Multi-GNSS Precise Positioning, Sensors, 2017, Vol. 17, pp. 756–768, DOI: 10.3390/s17040756.