ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 51-59

Retrieval of the atmospheric boundary layer parameters in a tropical cyclone based on the collocated data from GPS-sondes and satellite radar images

O.S. Ermakova 1 , D.A. Sergeev 1 , G.N. Balandina 1 , N.S. Rusakov 1 , E.I. Poplavsky 1 , Yu.I. Troitskaya 1 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
Accepted: 06.09.2019
DOI: 10.21046/2070-7401-2019-16-6-51-59
The paper is devoted to the study of the dependence of scattered microwave cross-polarized signal characteristics from Sentinel-1 satellite on the parameters of the atmospheric boundary layer based on data obtained from falling NOAA GPS sondes under adverse weather conditions in order to develop a geophysical model function (GMF). Field measurements and remote sensing data for hurricanes in the Atlantic basin were analyzed. For the data measured by GPS-sondes, average wind speed profiles were obtained, while the parameters of the wind boundary layer (roughness parameter and friction velocity) were restored using the self-similarity property from measurements in the “wake” part of the velocity profiles. Wind speed profiles for hurricanes Irma 07.09.2017, Maria 21.09.2017 and 23.09.2017, measured at a time close to the time of receiving satellite SAR images were used to calibrate both the wind speed and dynamic speed. This made it possible to obtain the dependence of the normalized radar cross-section (NRCS) of the cross-polarized signal scattered from the sea surface on the dynamic velocity of the wind flow.
Keywords: microwave scattering at the sea surface, cross-polarization, storm, hurricane, microwave remote sensing, polarization, boundary layers of the atmosphere and ocean, wind speed, turbulent wind stress
Full text

References:

  1. Ermakova O. S., Sergeev D. A., Balandina G. N., Rusakov N. S., Poplavsky E. I., Troitskaya Yu. I., Vosstanovlenie parametrov privodnogo pogranichnogo sloya v tropicheskom tsiklone po dannym padayushchikh GPS-zondov (Retrieval of the atmospheric boundary layer parameters in a tropical cyclone based on the data from GPS-zondes), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 301–309.
  2. Troitskaya Yu. I., Abramov V. I., Ermoshkin A. V., Zuikova E. M., Kazakov V. I., Sergeev D. A., Kandaurov A. A., Ermakova O. S., O vosstanovlenii turbulentnogo potoka impul’sa v pogranichnom sloe atmosfery pri sil’nom i uragannom vetre po izmereniyam secheniya rasseyaniya SVCh radiovoln poverkhnost’yu morya na ortogonal’noi polyarizatsii (On the restoration of the turbulent flow of momentum in the boundary layer of the atmosphere with a strong and hurricane wind by measuring the cross section for the scattering of microwave radio waves by the sea surface on orthogonal polarization), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 6, pp. 63–74, DOI: 10.21046/2070-7401-2016-13-6-63-74.
  3. Donelan M. A., Haus B. K., Reul N., Plant W. J., Stiassnie M., Graber H. C., Brown O. B., Saltzman E. S., On the limiting aerodynamic roughness of the ocean in very strong winds, Geophysical Research Letters, 2004, Vol. 31, L18306, DOI: 10.1029/2004GL019460.
  4. Donnelly W. J., Carswell J. R., McIntosh R. E., Chang P. S., Wilkerson J., Marks F., Black P. G., Revised Ocean Backscatter Models at C and Ku Band under High-Wind Conditions, J. Geophysical Research, 1999, Vol. 104(C5), pp. 11485–11497, DOI: 10.1029/1998JC900030.
  5. Fernandez D., Carswell J. R., Frasier S., Chang P. S., Black P. G., Marks F. D., Dual-polarized C- and Ku-band ocean backscatter response to hurricane-force winds, J. Geophysical Research, 2006, Vol. 111, C08013, DOI: 10.1029/2005JC003048.
  6. Foreman R. J., Emeis S., Revisiting the Definition of the Drag Coefficient in the Marine Atmospheric Boundary Layer, J. Physical Oceanography, 2010, Vol. 40, pp. 2325–2332, DOI: 10.1175/2010JPO4420.1.
  7. Hersbach H., Stoffelen A., de Haan S., An improved C-band scatterometer ocean geophysical model function: CMOD5, J. Geophysical Research, 2007, Vol. 112, C03006, DOI: 10.1029/2006JC003743.
  8. Hinze J. O., Turbulence: An Introduction to its Mechanism and Theory, New York: McGraw-Hill, 1959, 586 p., DOI: 10.1021/ed037pA556.
  9. Holthuijsen L. H., Powell M. D., Pietrzak J. D., Wind and waves in extreme hurricanes, J. Geophysical Research: Oceans, 2012, Vol. 117, C09003, DOI: 10.1029/2012JC007983.
  10. Horstmann J., Thompson D. R., Monaldo F., Iris S., Graber H. C., Can synthetic aperture radars be used to estimate hurricane force winds? Geophysical Research Letters, 2005, Vol. 32, L22801, DOI: 10.1029/2005GL023992.
  11. Liu W. T., Xie X., Sea surface wind/stress vector, In: Encyclopedia of Remote Sensing, New York: Springer, 2014, pp. 759–67, DOI: 10.1007/978-0-387-36699-9.
  12. Powell M. D., Vickery P. J., Reinhold T. A., Reduced drag coefficient for high wind speeds in tropical cyclones, Nature, 2003, Vol. 422, pp. 279–283, DOI: 10.1038/nature01481.
  13. Reppucci A., Lehner S., Schulz-Stellenfleth J., Yang C. S., Extreme wind conditions observed by satellite synthetic aperture radar in the North West Pacific, Intern. J. Remote Sensing, 2008, Vol. 29, pp. 6129–6144, DOI: 10.1080/01431160802175504.
  14. Shen H., Perrie W., He Y., A new hurricane wind retrieval algorithm for SAR images, Geophysical Research Letters, 2006, Vol. 33, L21812, DOI: 10.1029/2006GL027087.
  15. Stiles B. W., Dunbar R. S., A neural network technique for improving the accuracy of scatterometer winds in rainy conditions, IEEE Trans. Geoscience and Remote Sensing, 2010, Vol. 48, pp. 3114–3122, DOI: 10.1109/TGRS.2010.2049362.
  16. Troitskaya Y., Ermoshkin A., Zuikova E., Kazakov V., Sergeev D., Kandaurov A., Ermakova O., Abramov V., Laboratory study of cross-polarized radar return under gale-force wind conditions, Intern. J. Remote Sensing, 2016, Vol. 37, No. 9, pp. 1981–1989, DOI: 10.1080/01431161.2016.1160301.
  17. Vachon P. W., Wolfe J., C-band cross-polarization wind speed retrieval, IEEE Geoscience and Remote Sensing Letters, 2011, Vol. 8, No. 3, pp. 456–459, DOI: 10.1109/LGRS.2010.2085417.
  18. van Zadelhoff G.-J., Stoffelen A., Vachon P. W., Wolfe J., Horstmann J., Rivas M. B., Scatterometer Hurricane Wind Speed Retrievals Using Cross Polarization, Atmospheric Measurement Techniques Discussions, 2013, Vol. 7, No. 2, pp. 7945–7984, DOI: 10.5194/amtd-6-7945-2013.
  19. Williams B. A., Long D. G., Estimation of hurricane winds from SeaWinds at ultrahigh resolution, IEEE Trans. Geoscience and Remote Sensing, 2008, Vol. 46, pp. 2924–2935, DOI: 10.1109/TGRS.2008.924096.
  20. Yueh S., Stiles B. W., Liu W. T., QuikSCAT wind retrievals for tropical cyclones, IEEE Trans. Geoscience and Remote Sensing, 2003, Vol. 41, pp. 2616–2628, DOI: 10.1109/TGRS.2003.814913.
  21. Zhang B., Perrie W., Cross-polarized synthetic aperture radar: A new potential measurement technique for hurricanes, Bull. American Meteorological Society, 2012, Vol. 93, No. 4, pp. 531–541, DOI: 10.1175/BAMS-D-11-00001.1.