ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 254-262

Mesoscale tropospheric structure sensing during weather front passage

O.G. Khutorova 1 , A.S. Blizorukov 1 , V.V. Dementiev 1 , V.E. Khutorov 1 
1 Kazan (Volga region) Federal University, Kazan, Russia
Accepted: 18.10.2019
DOI: 10.21046/2070-7401-2019-16-6-254-262
Currently, data from global navigation satellite systems (GNSS) are used for remote sensing of atmospheric water vapor which allows us to study the structure of both inhomogeneity of the troposphere and its dynamics almost simultaneously with measurements of the received signal. Ground-based observations of signals from global satellite navigation systems in Kazan and its environs are used to identify patterns of the spatial mesoscale structure of troposphere during periods of atmospheric fronts passage. To assess the effect of the passing front on the distribution of water vapor in the atmosphere, several hundred events of atmospheric fronts passing through the observation point were selected, among which cold and warm fronts, occlusion fronts, and stationary ones were presented. The spatial separation of the stations and the high temporal resolution of the time series make it possible to record the movement of disturbances associated with atmospheric front. It was found that the change in air masses and atmospheric fronts affects the field of integral water vapor (IWV). An increase in the intensity of mesoscale inhomogeneity during periods of passage of atmospheric fronts to a height of 2500 m from the surface is shown. During the passage of a warm atmospheric front, the IWV increases simultaneously with a change in pressure. When passing a cold front, on the contrary, the IWV decreases.. The spatial separation of the network of stations makes it possible to trace the variability of the water vapor field at the mesoscale level. Often during the passage of the atmospheric front, IWV and its zonal and meridional gradients experience a sharp jump, after which damped quasiperiodic fluctuations of IWV are observed. The variability of IWV field manifests itself in all seasons of the year, but at positive temperatures it intensifies.
Keywords: GNSS, GLONASS, GPS, ZTD, IWV, water vapor, weather fronts
Full text


  1. Bulygina O. N., Veselov V. M., Razuvaev V. N., Aleksandrova T. M., Opisanie massiva srochnykh dannykh ob osnovnykh meteorologicheskikh parametrakh na stantsiyakh Rossii (Description of the array of urgent data on the main meteorological parameters at the stations of Russia), Certificate of state registration of date base No. 2014620549 (RU), Reg. 10.04.2014, available at:
  2. Kulichkov S. N., Golikova E. V., Chunchuzov I. P., Perepelkin V. G., Bush G. A., Gordin V. A., Issledovaniya vnutrennikh gravitatsionnykh voln ot atmosfernykh frontov v moskovskom regione, Izvestiya Rossiiskoi akademii nauk. Fizika atmosfery i okeana, 2017, Vol. 53, No. 4, pp. 455–469.
  3. Khutorova O. G., Khutorov V. E., Dementiev V. V., Blizorukov A. S., Korchagin G. E., Izmenchivost’ polei atmosfernogo vlagosoderzhaniya po dannym zondirovaniya signalami GPS-GLONASS v okrestnostyakh g. Kazani (Atmospheric moisture content variability from GPS-GLONASS data near the Kazan city), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 252–260.
  4. Shakina N. P., Vydelenie zon atmosfernykh frontov kak zadacha postprotsessinga rezul’tatov chislennogo prognoza (Isolation of zones of atmospheric fronts as a task of postprocessing the results of numerical forecast), Meteorologiya i gidrologiya, 2014, No. 1, pp. 5–20.
  5. Bevis M., Businger S., GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophysical Research, 1992, Vol. 97, No. D14, pp. 15787–15801.
  6. Boniface K., Ducrocq V., Jaubert B. G., Impact of high-resolution data assimilation of GPS zenith delay on Mediterranean heavy rainfall forecasting, Annales Geophysicae, 2009, Vol. 27, pp. 2739–2753.
  7. Dach R., Lutz S., Walser P., Fridez P., User manual of the Bernese GNSS Software, Version 5.2, Bern: AIUB, 2015, 884 p.
  8. Dementev V. V., Khutorova O. G., Khutorov V. E., Hardware-software system for monitoring of atmospheric water vapor structure in the city of Kazan, IOP Conf. Series: Earth and Environmental Science, 2018, Vol. 211, No. 1.
  9. Elgered G., Ning T., Forkman P., Haas R., On the information content in linear horizontal delay gradients estimated from space geodesy observations, Atmospheric Measurement Techniques, 2019, Vol. 12, pp. 3805–3823.
  10. Khutorova O. G., Teptin G. M., Vasiliev A. A., Khutorov V. E., Shlychkov A. P., Passive sounding of the radiowaves refraction index structure in the troposphere by the set of satellite navigation system receivers in Kazan city, Radiophysics and Quantum Electronics, 2011, Vol. 54, No. 1, pp. 1–7.
  11. Khutorova O. G., Khutorov V. E., Blizorukov A. S., Teptin G. M., GPS Signals Phase Fluctuations Caused by Atmospheric Integral Water Vapor Mesoscale Variability, Progress in Electromagnetics Research Symp., Proc., Saint Petersburg, 2017, pp. 3551–3555.
  12. Khutorova O. G., Khutorov V. E., Blizorukov A. S., Dementiev V. V., 24th Intern. Symp. Atmospheric and Ocean Optics: Atmospheric Physics. Proc. SPIE, 2018, Vol. 10833, 108337Y, DOI: 10.1117/12.2504385.
  13. Li X., Zus F., Lu C., Ning T., Dick G., Ge M., Wickert J., Schuh H., Retrieving high-resolution tropospheric gradients from multiconstellation GNSS observations, Geophysical Research Letters, 2015, Vol. 42, pp. 4173–4181.
  14. Meindl M., Schaer S., Hugentobler U., Beutler G., Tropospheric gradient estimation at code: Results from global solutions, J. Meteorological Society of Japan, 2004, Vol. 82, pp. 331–338.
  15. Mendes V. B., Modeling the neutral-atmospheric propagation delay in radiometric space techniques, Brunswick: UNB, 1999, 353 p.
  16. Orlanski I., A rational subdivision of scales for atmospheric processes, Bull. American Meteorological Society, 1975, Vol. 56, No. 5, pp. 527–530.
  17. Rothacher M., Springer T. A., Schaer S., Beutler G., Processing strategies for regional GPS networks, Intern. Association of Geodesy Symposia, 1998, Vol. 118, pp. 93–100.
  18. Santerre R., GPS satellite sky distribution: impact on the propagation of some important errors in precise relative positioning, Brunswick: UNB, 1989, 203 p.