ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 72-80

Intercalibration of SI-1 and IKFS-2 spaceborne infrared Fourier transform spectrometers

D.A. Kozlov 1 , F.S. Zavelevich 1 , Yu.M. Timofeyev 2 , A.V. Polyakov 2 , I.A. Kozlov 1 , I.S. Cherkashin 1 
1 SSC Keldysh Research Centre, Moscow, Russia
2 Saint Petersburg State University, Saint Petersburg, Russia
Accepted: 19.11.2019
DOI: 10.21046/2070-7401-2019-16-6-72-80
The study of climate change based on spectral radiances of outgoing infrared radiation measured by different space-borne spectroradiometers, requires careful intercalibration of these instruments. The results of SI-1/Meteor-28(-29) (1977, 1979) and IKFS-2/Meteor-M N2 (in orbit operation since 2015) FTIR spectrometers intercalibration are presented in this paper to clarify the results of IR atmospheric spectra changes over the past 40 years, previously obtained by authors. The double-difference method is applied due to the impossibility of direct (synchronous) comparisons. Calculations of the infrared atmospheric spectra based on the radiosonde data and carbon dioxide data carried out using the LBLTRM radiation code are used as reference measurements. It was found that both the mean and standard deviation for double differences after selecting the most reliable measurements do not exceed 1–2 mW/(m2•sr•cm–1) in almost the entire spectral range under consideration 660–1350 cm–1, which indicates a good calibration agreement between two instruments.
Keywords: infrared Fourier Transform spectrometer, space-borne instruments, atmospheric spectra, intercalibration, double-difference method, IKFS-2, SI-1
Full text

References:

  1. Golovin Yu. M., Zavelevich F. S., Kozlov D. A., Kozlov I. A., Monakhov D. O., Nikulin A. G., Uspenskii A. B., Rublev A. N., Kukharskii A. V., Infrakrasnyi fur’e-spektrometr IKFS-2: rezul’taty ekspluatatsii na bortu meteosputnika “Meteor-M” No. 2 (Infrared Fourier-Transform Spectrometer IKFS-2 Operating Onboard “Meteor-M” No. 2 Satellite), Issledovanie Zemli iz kosmosa, 2017, No. 4, pp. 88–100.
  2. Kozlov D. A., Kozlov A. A., Zavelevich F. S., Kiseleva Yu. V., Kozlov I. A., Kukharskii A. V., Rublev A. N., Uspenskii A. B., Cherkashin I. S., Otsenki pogreshnosti bortovoi radiometricheskoi kalibrovki IK-zondirovshchika IKFS 2 po dannym skanera SEVIRI (IRFS-2 onboard radiometric calibration errors evaluation by comparison with SEVIRI/Meteosat-10 data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 6, pp. 264–272.
  3. Kozlov D. A., Timofeev Yu. M., Polyakov A. V., Kozlov I. A., Deler V., Ortel D., Shpenkukh D., Metodika perescheta spektrov teplovogo izlucheniya atmosfery razlichnogo spektral’nogo razresheniya dlya vzaimnogo sopostavleniya izmerenii bortovykh infrakrasnykh fur’e-spektrometrov (Recalculation of outgoing atmospheric spectra measured by infrared Fourier transform spectrometers with different spectral resolution), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 52–60.
  4. Timofeev Yu. M., Polyakov A. V., Kozlov D. A., Deler V., Ortel D., Shpenkukh D., Sopostavlenie spektrov ukhodyashchego teplovogo IK izlucheniya raznykh let (Comparison of outgoing IR radiation spectra measured in different years), Issledovanie Zemli iz kosmosa, 2018, No. 5, pp. 65–72.
  5. Alvarado M. J., Payne V. H., Mlawer  E. J., Uymin G., Shephard M. W., Cady-Pereira K. E., Delamere J. S., Moncet J.-L., Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: recent updates evaluated with IASI case studies, Atmospheric Chemistry and Physics, 2013, Vol. 13, pp. 6687–6711.
  6. Anderson J. G., Dykema J. A., Goody R. M., Hu H., Kirk-Davidoff D. B., Absolute, spectrally-resolved, thermal radiance: a benchmark for climate monitoring from space, J. Quantitative Spectroscopy and Radiative Transfer, 2004, Vol. 85, pp. 367–383.
  7. Bantges R. J., Brindley H. E., On the Detection of Robust Multidecadal Changes in Earth’s Outgoing Longwave Radiation Spectrum, J. Climate, 2016, Vol. 29, pp. 4939–4947.
  8. Elliott D. A., Aumann H. H., Strow L., Hannon S., Two-year comparison of radiances from the Atmospheric Infrared Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI), Proc. SPIE — Intern. Society for Optical Engineering, 2009, Vol. 7456, DOI: 10.1117/12.826996.
  9. Goody R., Anderson J., North G., Testing climate models: an approach, Bull. American Meteorological Society, 1998, Vol. 79, No. 11, pp. 2541–2549.
  10. Griggs J. A., Harries J. E., Comparison of spectrally resolved outgoing longwave radiation over the Tropical Pacific between 1970 and 2003 using IRIS, IMG, and AIRS, J. Climate, 2007, Vol. 20, pp. 3982–4001.
  11. Harries J. E., Brindley H. E., Sagoo P. J., Bantges R. J., Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997, Nature, 2001, Vol. 410, pp. 355–357.
  12. Kempe V., Satellite-Fourier-spectrometer for Meteor25: design problems and mission, Acta Astronautica, 1980, Vol. 7, pp. 893–902.
  13. Kempe V., Oertel D., Schuster R., Becker-Ross H., Jahn H., Absolute IR-spectra from the measurement of Fourier-spectrometers aboard Meteor 25 and 28, Acta Astronautica, 1980, Vol. 7, pp. 1403–1416.
  14. Zavelevich F., Kozlov D., Kozlov I., Cherkashin I., Uspensky A., Kiseleva Yu., Golomolzin V., Filei A., IKFS-2 radiometric calibration stability in different spectral bands, GSICS Quarterly, 2018, Vol. 12, No. 1, pp. 4–6.