ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 159-173

Development of satellite monitoring methods for sugarcane crop condition assessment in Peninsular India

E.S. Elkina 1 , V.A. Egorov 1 , D.E. Plotnikov 1 , E.V. Samofal 1 , S.А. Bartalev 1 , V.C. Patil 2 , J.К. Sunil 2 , V.C. Chavan 3 
1 Space Research Institute RAS, Moscow, Russia
2 K.J. Somaiya Institute of Applied Agricultural Research, Sameerwadi, India
3 K.J. Somaiya Institute of Engineering and Information Technology, Mumbai, India
Accepted: 28.06.2019
DOI: 10.21046/2070-7401-2019-16-5-159-173
This study explores the possibilities of sugarcane identification on satellite imagery in Peninsular India and its crop condition assessment in terms of water and nitrogen nutrition status. Sugarcane monitoring is an important objective for a number of countries in the tropical and subtropical regions, however, there is no single set of methodological approaches to its solution. Progress in this field of research requires the studying of sugarcane spectral and biophysical characteristics and developing satellite data processing methods. The literature on the application of remote sensing to sugarcane monitoring is reviewed and the main difficulties and advantages for sugarcane satellite monitoring are highlighted. From preliminary experiments of sugarcane identification, it can be concluded that high-resolution satellite data give satisfactory results. The team of K. J. Somaiya Institute of Engineering and Information Technology conducted ground truth data collection in the test area as a preliminary step of the studies. The data collected on different crops were used for creating training and validation sets. Time-series of optical (Sentinel-2) and radar (Sentinel-1) vegetation indices were created to perform temporal-spectral analysis of sugarcane crops in comparison with other major crops in the region. Studies of phenological and spectral temporal sugarcane crops characteristics showed that the length of vegetation period and the level of the accumulated biomass may be the informative metrics for sugarcane discrimination from other crops in satellite imagery. For the crop condition assessment in terms of water and nitrogen nutrition status, ground experiments are proposed with further evaluation of information value of satellite crop condition indicators. Web-based vegetation monitoring service Vega-GEOGLAM, developed at the Space Research Institute RAS, is viewed as a technical platform for the studies.
Keywords: sugarcane, satellite monitoring, Sentinel, crop identification, crop condition assessment, Vega-GEOGLAM, vegetation indices
Full text

References:

  1. Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Kashnitskiy A. V., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., Tsentr kollektivnogo pol’zovaniya sistemami arkhivatsii, obrabotki i analiza sputnikovykh dannykh IKI RAN dlya resheniya zadach izucheniya i monitoringa okruzhayushchei sredy (IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 263–284.
  2. Tolpin V. A., Bartalev S. A., Elkina E. S., Kashnitskiy A. V., Konstantinova A. M., Loupian E. A., Marchenkov V. V., Plotnikov D. E., Informatsionnaya sistema Vega-GEOGLAM ― instrument razrabotki metodov i podkhodov ispol’zovaniya dannykh sputnikovogo distantsionnogo zondirovaniya v interesakh resheniya zadach global’nogo sel’skokhozyaistvennogo monitoringa (Geoinformatic system Vega-GEOGLAM as a tool for development of methods for global agricultural monitoring), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 183–197.
  3. Abdel-Rahman E. M., Ahmed F. B., The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: a review of the literature, Intern. J. Remote Sensing, 2008, Vol. 29, pp. 3753–3767.
  4. Abdelrahim E., Abdelaziem A., Monitoring and Yield Estimation of Sugarcane Using Remote Sensing and IS, American J. Engineering Research, 2018, Vol. 7, Issue 1, pp. 170–179.
  5. Allen R. G., Tasumi M., Morse A., Trezza R., Wright J. L., Bastiaanssen W., Kramber W., Lorite I., Robinson C. W., Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC) ― Applications, J. Irrigation and Drainage Engineering, 2007, Vol. 133(4), pp. 395–406.
  6. Baghdadi N., Cresson R., Todoroff P., Moinet S., Multitemporal Observations of Sugarcane by TerraSAR-X Images, Sensors, 2010, No. 10, pp. 8899–8919.
  7. Cleveland W. S., Robust Locally Weighted Regression and Smoothing Scatterplots, J. American Statistical Association, 1979, Vol. 74(368), pp. 829–836.
  8. Delegido J., Verrelst J., Meza C., Rivera J., Alonso L., Moreno J., A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems, European J. Agronomy, 2013, Vol. 46, pp. 42–52.
  9. Formaggio A. R., Vieira M. A., Rennó C. D., Mello M. P., Object-Based Image Analysis and Data Mining for mapping sugarcane with Landsat imagery in Brazil, The Intern. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2010, Vol. XXXVIII-4/C7.
  10. Fortes C., Dematee J. A. M., Discrimination of sugarcane varieties using Landsat 7 ETM+ spectral data, Intern. J. Remote Sensing, Vol. 27, 2006, No. 7–8, pp. 1395–1412.
  11. Junior C. C., Johann J. A., Antunes J. F. G., Mapping of sugarcane crop area in the Paraná State using Landsat/TM/OLI and IRS/LISS-3 images, Revista Brasileira de Engenharia Agrícola e Ambiental, 2017, Vol. 21, No. 6, pp. 427–432.
  12. Lin H., Chen J., Liang S., Li Q., Sugarcane Mapping in Tillering Period by Quad-Polarization TerraSAR-X Data, IEEE Geoscience and Remote Sensing Letters, 2015, Vol. 12, No. 5, pp. 993–997.
  13. Lisboa I. P., Damian J. M., Cherubin M. R., Barros P. P. S., Fiorio P. R., Cerri C. C., Pellegrino C. E., Prediction of Sugarcane Yield Based on NDVI and Concentration of Leaf-Tissue Nutrients in Fields Managed with Straw Removal, Agronomy, 2018, No. 8, 196 p.
  14. Mulianga B., Bégué A., Clouvel P., Todoroff P., Mapping Cropping Practices of a Sugarcane-Based Cropping System in Kenya Using Remote Sensing, Remote Sensing, 2015, No. 7(11), pp. 14428–14444.
  15. Mulyono S., Nadirah, Identifying Sugarcane Plantation using LANDSAT-8 Images with Support Vector Machines, Earth and Environmental Science, 2016, Vol. 47, No. 1, pp. 1–8.
  16. Muñoz-Huerta R. F., Guevara-Gonzalez R. G., Contreras-Medina L. M., Torres-Pacheco I., Prado-Olivarez J., Ocampo-Velazquez R. V., A Review of Methods for Sensing the Nitrogen Status in Plants: Advantages, Disadvantages and Recent Advances, Sensors, 2013, No. 13, pp. 10823–10843.
  17. Rajeev R., Ankita J., Nain A. S., Remote sensing as a tool for discrimination and accuracy assessment of Sugarcane crop, Intern. J. Basic and Applied Agricultural Research, 2014, Vol. 12, No. 2, pp. 173–177.
  18. Schultz B., Immitzer M., Self-Guided Segmentation and Classification of Multi-Temporal Landsat 8 Images for Crop Type Mapping in Southeastern Brazil, Remote Sensing, 2015, No. 7, pp. 14482–14508.
  19. Sharma L. K., Bu H., Denton A., Franzen D. W., Active-optical sensors using red NDVI compared to red edge NDVI for prediction of corn grain yield in North Dakota, USA, Sensors, 2015, Vol. 15, No. 11, pp. 27832–27853.
  20. Steinhausen M. J., Wagner P. D., Balaji N., Waske B., Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions, Intern. J. Applied Earth Observation and Geoinformation, 2018, pp. 595–604.
  21. Verma A. K., Garg P. K., Hari Prasad K. S., Sugarcane crop identification from LISS IV data using ISODATA, MLC, and indices based decision tree approach, Arabian J. Geosciences, 2017, No. 10(1), pp. 1–17.
  22. Vicente A. K., Gomes D., Victoria D. d. C., Vicente A. C. Iwashita F., Evaluation of annual sugarcane monitoring using MODIS/EVI temporal series and spectral mixture analysis approach, Intern. Geoscience and Remote Sensing Symp., Proc., 2013, pp. 1–8.
  23. Vikesh K., Vinod K., Jain K., Development of Spectral Signatures and Classification of Sugarcane using ASTER Data, Intern. J. Computer Science and Communication, 2010, Vol. 1, No. 1, pp. 245–251.
  24. Zhou Z., Huang J., Wang J., Zhang K., Kuang Z., Zhong S., Song X., Object-Oriented Classification of Sugarcane Using Time-Series Middle-Resolution Remote Sensing Data Based on AdaBoost, PLoS ONE, 2015, No. 10, pp. 1–16.