ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 268-281

Seasonal and diurnal cycle of the Black Sea water temperature from temperature-profiling drifters data

V.A. Rubakina 1 , A.A. Kubryakov 1 , S.V. Stanichny 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 18.09.2019
DOI: 10.21046/2070-7401-2019-16-5-268-281
In the present study, the features of the temperature diurnal cycle of the Black Sea upper layer during different seasons were studied using temperature-profiling drifters data and the scanner SEVIRI. According to the thermodrifters data, the maximal negative temperature anomalies in the surface layer (horizon of 0.2 m) are typical for period from 06:00 to 07:00 in the morning, and the maximum positive anomalies in the second half of the day from 15:00 to 17:00. The largest diurnal absolute temperature deviations from mean seasonal values are noted in the spring-summer period with a maximum in May. Set of the diurnal cycle features in the cold period of the year is noted. In January, the temperature on the horizon 0.2 m is lower than on the horizons of 12.2 and 15.2 m during the day. On the horizon of 0.2 m, the diurnal cycle with a maximum at 16:00 and a minimum at 08:00 is expressed. In February and in March, during the daytime, the surface heats up more strongly than the layers of 12.2–15.2 m, and during the night cooling period the temperature becomes lower than at these horizons. Events of significant diurnal warming in the cold and warm period of the year are considered. In February 2014, according to the data of drifter N 248990, four significant events were identified. The difference between the maximum and minimum temperature values during the day reached 0.6 °C on a horizon of 0.2 m. Temperature changes of the horizons below 10 m were not observed. During the warm period of the year the difference between the maximum and minimum values during the day on a horizon of 0.2 m for significant diurnal warming events exceeded 4 °C and reached 5.1 °C. The rise of short-wave radiation fluxes and the decrease of wind mixing lead to the water stratification and the observed daily warming in the summer and winter periods of the year. All of these events were observed during calm weather conditions in which the wind speed did not exceed 5 m/s and cloud cover was absent. A brief comparison of the SEVIRI data with the temperature-profiling drifters data was carried out. The performed intercalibration shows a good conformity between satellite and contact data. Relative errors of satellite measurements do not exceed 0.4 °C.
Keywords: temperature-profiling drifters, SEVIRI, seasonal and diurnal cycle of the water temperature, Black Sea, diurnal warming
Full text

References:

  1. Akimov E. A., Stanichnyi S. V., Polonskii A. B., Ispol’zovanie dannykh skanera SEVIRI dlya otsenki temperatury poverkhnostnogo sloya Chernogo morya (Using of SEVIRI Scanner Data for estimation of Black Sea Surface Temperature), Morskoi gidrofizicheskii zhurnal, 2014, No. 6, pp. 37–46.
  2. Efimov V. V., Barabanov V. S., Brizovaya tsirkulyatsiya v Chernomorskom regione (Breeze circulation in the Black Sea region), Morskoi gidrofizicheskii zhurnal, 2009, No. 5, pp. 23–36.
  3. Rubakina V. A., Kubryakov A. A., Stanichnyi S. V., Sezonnaya izmenchivost’ sutochnogo khoda temperatury poverkhnostnogo sloya Chernogo morya po dannym skanera SEVIRI (Seasonal Variability of the Diurnal Cycle of the Black Sea Surface Temperature from the SEVIRI Satellite Measurements), Morskoi gidrofizicheskii zhurnal, 2019, No. 2, pp. 171–184, DOI: 10.22449/0233-7584-2019-2-171-184.
  4. Tolstosheev A. P., Ispol’zovanie termoprofiliruyushchikh dreifuyushchikh buev dlya izucheniya verkhnego sloya Chernogo morya (The use of temperature-profiling drifters to study the Black Sea upper layer), Ekologіchna bezpeka priberezhnoї ta shel’fovoї zon ta kompleksne vikoristannya resursіv shel’fu, 2011, pp. 273–278.
  5. Tolstosheev A. P., Lunev E. G., Motyzhev V. S., Razvitie sredstv i metodov drifternoi tekhnologii primenitel’no k probleme izucheniya Chernogo morya (Development of means and methods of drifter technology applied to the problem of the Black Sea research), Okeanologiya, 2008, Vol. 48, No. 1, pp. 149–158.
  6. Tolstosheev A. P., Lunev E. G., Motyzhev S. V., Analiz rezul’tatov naturnykh eksperimentov s termoprofiliruyushchimi dreifuyushchimi buyami v Chernom more i drugikh raionakh Mirovogo okeana (Analysis of the field experiments results with temperature-profiling drifters in the Black Sea and other World Ocean regions), Morskoi gidrofizicheskii zhurnal, 2014, No. 5, pp. 9–32.
  7. Castro S. L., Wick G. A., Buck J. J., Comparison of diurnal warming estimates from unpumped Argo data and SEVIRI satellite observations, Remote Sensing of Environment, 2014, Vol. 140, pp. 789–799, available at: https://doi.org/10.1016/j.rse.2013.08.042.
  8. Dee D. P., Uppala S. M., Simmons A. J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M. A., Balsamo G., Bauer P., Bechtold P., Beljaars A. C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A. J., Haimberger L., Healy S. B., Hersbach H., Hólm E. V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A. P., Monge‐Sanz B. M., Morcrette J.‐J., Park B.‐K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.‐N., Vitart F., The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Quarterly J. Royal Meteorological Society, 2011, Vol. 137, No. 65, pp. 553–597, available at: https://doi.org/10.1002/qj.828.
  9. Efimov V. V., Krupin A. V., Breeze circulation in the Black Sea region, Russian Meteorology and Hydrology, 2016, Vol. 41, Issue 4, pp. 240–246, DOI: 10.3103/S1068373916040026.
  10. Filipiak M. J., Merchant C. J., Kettle H., Borgne P. L., An empirical model for the statistics of sea surface diurnal warming, Ocean Science, 2012, Vol. 8, Issue 2, pp. 197–209, DOI: 10.5194/os-8-197-2012.
  11. Garmashov A. V., Kubryakov A. A., Shokurov M. V., Stanichny S. V., Toloknov Y. N., Korovushkin A. I., Comparing satellite and meteorological data on wind velocity over the Black Sea, Izvestiya ― Atmospheric and Oceanic Physics, 2016, Vol. 52, Issue 3, pp. 309–316, DOI: 10.1134/S000143381603004X.
  12. Gentemann C. L., Minnett P. J., Le Borgne P., Merchant C. J., Multi‐satellite measurements of large diurnal warming events, Geophysical Research Letters, 2008, Vol. 35, Issue 22, pp. 1–6, DOI:10.1029/2008GL035730.
  13. Greenwald T. J., Stephens G. L., Vonder Haar T. H., Jackson D. L., A physical retrieval of cloud liquid water over the global oceans using Special Sensor Microwave/Imager (SSM/I) observations, J. Geophysical Research: Atmospheres, 1993, Vol. 98, No. D10, pp. 18471–18488, available at: https://doi.org/10.1029/93JD00339.
  14. Grodsky S. A., Kudryavtsev V. N., Bentamy A., Carton J. A., Chapron B., Does direct impact of SST on short wind waves matter for scatterometry? Geophysical Research Letters, 2012, Vol. 39, Issue 12, pp. 1–6, DOI: 10.1029/2012GL052091.
  15. Karagali I., Hoyer J. L., Characterisation and quantification of regional diurnal SST cycles from SEVIRI, Ocean Science, 2014, Vol. 10, Issue 5, pp. 745–758, DOI:10.5194/os-10-745-2014.
  16. Marullo S., Santoleri R., Banzon V., Evans R. H., Guarracino M., A diurnal‐cycle resolving sea surface temperature product for the tropical Atlantic, J. Geophysical Research: Oceans, 2010, Vol. 115, Issue 5, pp. 1–18, DOI: 10.1029/2009JC005466.
  17. Marullo S., Minnett P. J., Santoleri R., Tonani M., The diurnal cycle of sea‐surface temperature and estimation of the heat budget of the Mediterranean Sea, J. Geophysical Research: Oceans, 2016, Vol. 121, Issue 11, pp. 8351–8367, DOI: 10.1002/2016JC012192.
  18. Meissner T., Wentz F., Hilburn K., Lagerloef G., Le Vine D., Proc. Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2012, pp. 386–388.
  19. Merchant C. J., Filipiak M. J., Le Borgne P., Roquet H., Autret E., Piollé J. F., Lavender S., Diurnal warm‐layer events in the western Mediterranean and European shelf seas, Geophysical Research Letters, 2008, Vol. 35, Issue 4, pp. 1–4, DOI: 10.1029/2007GL033071.
  20. Mikaelyan A. S., Chasovnikov V. K., Kubryakov A. A., Stanichny S. V., Phenology and drivers of the winter–spring phytoplankton bloom in the open Black Sea: The application of Sverdrup’s hypothesis and its refinements, Progress in Oceanography, 2017, Vol. 151, pp. 163–176, available at: https://doi.org/10.1016/j.pocean.2016.12.006.
  21. Saunders P. M., The temperature at the ocean-air interface, J. Atmospheric Sciences, 1967, Vol. 24, No. 3, pp. 269–273, DOI: 10.1002/2017MS001175.
  22. Stuart-Menteth A. C., Robinson I. S., Challenor P. G., A global study of diurnal warming using satellite-derived sea surface temperature, J. Geophysical Research: Oceans, 2003, Vol. 108, No. C5, pp. 1–16, DOI: 10.1029/2002JC001534.