ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 34-44

Satellite risk mapping of urban surface overheating (by the example of Saint Petersburg)

S.G. Kritsuk 1 , V.I. Gornyy 1 , I.Sh. Latypov 1 , A.A. Pavlovskii 2 , A.A. Tronin 1 
1 Saint Petersburg Scientific Research Center for Ecological Safety RAS, Saint Petersburg, Russia
2 State Research and Design Center for Saint Petersburg Master Plan, Saint Petersburg, Russia
Accepted: 19.08.2019
DOI: 10.21046/2070-7401-2019-16-5-34-44
A methodological approach for integration of spatial data from remote sensing with time series of local characteristics of near surface boundary layer of atmosphere is proposed. The approach is implemented by the example of satellite mapping of risks (probabilities) of urban surface overheating. Knowledge of these risks is necessary for assessing the economic losses from traffic disruption as a result of road cover softening. The urgency of the problem is caused by the global warming. St. Petersburg was chosen as the object of study. Materials for the study were Landsat scenes and the time series of standard observations of few meteorological stations. The theoretical foundations of satellite mapping of the risk of urban surface overheating are given. The analysis of the sustainability of proposed algorithm of risk assessments was performed depending on the choice of the reference meteorological station and on the number of satellite images. The result was a map of the risk of urban surface overheating. It was shown that industrial zones were characterized by highest risk of overheating, while recreational zones, as well as the territories built up with five-story buildings had minimal risk. The method can be used in supporting management decisions aimed to parry threats of overheating as a result of global warming. It is concluded that the proposed approach is highly effective and cost efficient.
Keywords: city, climate warming, asphalt, overheating, satellite, remote sensing, risk of overheating
Full text

References:

  1. Baldina E. A., Grishchenko M. Yu., Issledovanie “teplovogo ostrova” Moskvy po raznosezonnym snimkam Landsat 7/ETM+ (“Heat Island” of Moscow Investigation by using multi-time images of Landsat 7/ETM+), Geoinformatika, 2011, No. 3, pp. 62–69.
  2. Varentsov M. I., Konstantinov P. I., Samsonov T. E., Repina I. A., Izuchenie fenomena gorodskogo ostrova tepla v usloviyakh polyarnoi nochi s pomoshch’yu eksperimental’nykh izmerenii i distantsionnogo zondirovaniya na primere Noril’ska (Investigation of the urban heat island phenomenon during polar night based on experimental measurements and remote sensing of Norilsk city), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 329–337.
  3. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Tronin A. A., Shilin B. V., Distantsionnyi izmeritel’nyi monitoring teplopoter’ gorodskikh i promyshlennykh aglomeratsii (na primere Sankt-Peterburga i Khel’sinki) (Remote measuring monitoring of urban and industrial heat losses (on the example of Saint Petersburg and Helsinki)), Teploeffektivnye tekhnologii. Informatsionnyi byulleten’, No. 2, 1997, pp. 17–23.
  4. Gornyy V. I., Lyal’ko V. I., Kritsuk S. G., Latypov I. Sh., Tronin A. A., Filippovich V. E., Stankevich S. A., Brovkina O. V., Kiselev A. V., Davidan T. A., Lubskii N. S., Krylova A. B., Prognoz teplovoi reaktsii gorodskoi sredy Sankt-Peterburga i Kieva na izmenenie klimata (po materialam sʺemok sputnikami EOS i Landsat) (Forecast of Saint Petersburg and Kiev thermal replies on climate change (on the basis of EOS and Landsat satellite imagery)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 176–191.
  5. Korn G. A., Korn T. M., Mathematical handbook for sciences and engineering, New York: McGraw-Hill Book Company Inc., 1961, 1152 p.
  6. MGEIK, 2014: Izmenenie klimata, 2014 g.: Obobshchayushchii doklad. Vklad Rabochikh grupp I, II i III v Pyatyi otsenochnyi doklad Mezhpravitel’stvennoi gruppy ekspertov po izmeneniyu klimata (MGEIK, 2014: Climate change, 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change), core group of authors, R. K. Pachauri, L. A. Meier (eds.), Geneva: MGEIK, 2014, 163 p., available at: http://www.meteorf.ru/upload/iblock/69e/Izmenenie-klimata-N51-NovDec-2014.pdf/.
  7. Menzhulin G. V., Pavlovskii A. A., Kompleksnaya metodika rascheta i otsenki narushenii estestvennogo klimaticheskogo rezhima v megapolise Sankt-Peterburg (Combined technique for analysis of natural climate infraction by megacities evaluations for Saint Petersburg), Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2016, No. 43, pp. 154–173.
  8. Government of Russian Federation: Order No. 539, Date 23.08.2007.
  9. Periody sil’noi zhary: ugrozy i otvetnye mery (Heat waves and retaliation), Ser: Zdorov’e i global’noe izmenenie okruzhayushchei sredy (Series “Health and global environmental change”), No. 2, Copenhagen: WHO Regional Office for Europe, 2005, 121 p., available at: http://www.euro.who.int/__data/assets/pdf_file/0009/96975/E82629R.pdf (accessed in 2019).
  10. Yaglom I. M., Yaglom A. M., Veroyatnost’ i informatsiya (Probability and information), Moscow: Nauka, 1973, 512 p.
  11. Allen M. R., Dube O. P., Solecki W., Aragón-Durand F., Cramer W., Humphreys S., Kainuma M., Kala J., Mahowald N., Mulugetta Y., Perez R., Wairiu M., Zickfeld K., Global warming of 1.5C: An IPCC Special Report on the impacts of global warming of 1.5C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, 2018, https://www.ipcc.ch/sr15/.
  12. Bornstein R. D., Observations of the Urban Heat Island Effect in New York City, J. Applied Meteorology, 1968. Vol. 7. No. 4. pp. 575–582, available at: https://journals.ametsoc.org/doi/pdf/10.1175/1520-0450%281968%29007%3C0575%3AOOTUHI%3E2.0.CO%3B2/.
  13. Guoyin C., Mingyi D., Xue Y., Monitoring of urban heat island effect in Beijing combining ASTER and TM data, Intern. J. Remote Sensing, 2011, Vol. 32, No. 5, pp. 1213–1232.
  14. Gutierrez E., Gonzalez J. E., Martilli A., Bornstein R., Arend M., Simulations of a Heat-Wave Event in New York City Using a Multilayer Urban Parameterization, J. Applied Meteorology and Climatology, 2015, Vol. 54, pp. 283–301.
  15. Hu Y., Jia G., Pohl C., Feng Q., He Y., Gao H., Xu R., van Genderen J., Feng J., Improved monitoring of urbanization processes in China for regional climate impact assessment, Environmental Earth Sciences, 2015, Vol. 73, Issue 12, pp. 8387–8404.
  16. Javier M. V., Sarricolea P., Moreno-García C., On the definition of urban heat island intensity: the “rural” reference, Frontiers in Earth Science, 2015, Vol. 3, Article 24, pp. 1–3, available at: https://www.researchgate.net/publication/277217810_On_the_definition_of_urban_heat_island_intensity_The_rural_reference/.
  17. Oke T. R., Johnson G. T., Steyn D. G., Watson I. D., Simulation of surface urban heat islands under “ideal” conditions at night part 2: Diagnosis of causation, Boundary-Layer Meteorology, 1991, Vol. 56(4), pp. 339–358, available at: https://link.springer.com/article/10.1007/BF00119211 (accessed in 2019).
  18. Park M. S., Park S. H., Chae J. H., Choi M. H., Song Y., Kang M., High-Resolution Urban Observation Network for a User-Specific Meteorological Information Service in the Seoul Metropolitan Area, Korea, Atmospheric Measurement Techniques Discussions, 2016, pp. 1–25.
  19. Price J. C., Assessment of the Urban Heat Island Effect Through the Use of Satellite Data, Monthly Weather Review, 1979, Vol. 107, pp. 1554–1557, DOI: http://dx.doi.org/10.1175/1520-0493(1979)107<1554:AOTUHI>2.0.CO;2/.
  20. Yu X., Guo X., Wu Zh., Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method, Remote Sensing, 2014, No. 6, pp. 9829–9852, DOI: 10.3390/rs6109829.
  21. Zhou D., Xiao J., Bonafoni S., Berger C., Deilami K., Zhou Y., Frolking S., Yao R., Qiao Z., Sobrino J. A., Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives, Remote Sensing, 2019, Vol. 11, Issue 1, p. 48, available at: https://www.mdpi.com/2072-4292/11/1/48/.