ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 243-254

Geophysical model functions for cold water microwave radiation dependency on wind speed in K and Ka range at an incidence angle of 55°

E.V. Zabolotskikh 1 , B. Chapron 2, 1 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
2 Institut Français de Recherche pour l’Exploitation de la Mer, Plouzané, France
Accepted: 07.07.2019
DOI: 10.21046/2070-7401-2019-16-5-243-254
Geophysical model functions (GMFs) of the ocean microwave radiation dependence on wind speed at the frequencies of K and Ka range for an incidence angle of 55° are derived using the measurements of the satellite microwave radiometer Advanced Microwave Scanning Radiometer 2 (AMSR2) over open Arctic ocean at the sea surface temperatures (SST), not exceeding 10 °C. To estimate ocean radiation coefficients, surface microwave radiation was calculated using physical modeling of the ocean – atmosphere system brightness temperature. The simulation results made it possible to estimate surface radiation at 18.7, 23.8 and 36.5 GHz on the vertical and horizontal polarization with known atmospheric parameters, based on the ERA-Interim reanalysis data. These estimates were matched to the sea surface wind speeds (V), retrieved by applying previously developed V retrieval algorithm to the AMSR2 measurements at 6.9 and 10.65 GHz. The resulting GMF were compared to a widely used published model. A more significant dependence of the GMFs on SST is found: at SST < 4 °C, differences in the GMFs are not observed, but at 4 < SST < 10 °C the sensitivity of the emissivity to V drops with the SST increase for all the frequencies at horizontal and vertical polarization. The resulting regression lines have a positive slope. The sensitivity of a horizontally polarized signal to sea surface wind speed is more than 2 times higher than the sensitivity of a vertically polarized signal.
Keywords: microwave radiation, geophysical model functions, sea surface wind speed, Arctic, satellite microwave radiometers, brightness temperatures, AMSR2, physical modeling
Full text


  1. Kuzmin A. V., Repina I. A., Sadovsky I. N., Selunsky A. B., Mikrovolnovye radiometricheskie issledovaniya morskoi poverkhnosti (Microwave radiometric studies of the sea surface), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 76–97.
  2. Sadovsky I. N., Metodika distantsionnogo opredeleniya kharakteristik vetrovogo volneniya: 1. Raschet radioyarkostnykh kontrastov vzvolnovannoi vodnoi poverkhnosti (Methods for remote estimation of wind-wave characteristics: 1. Calculation of radio brightness contrasts of wind roughened sea water surface), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Vol. 2, No. 5, pp. 192–198.
  3. Sazonov D. S. (2017a), Korrelyatsionnyi analiz eksperimentalnykh distantsionnykh izmerenii i modelei mikrovolnovogo izlucheniya vzvolnovannoi vodnoi poverkhnosti (Correlation analysis of experimental remote sensing measurements and models of microwave radiation of wind roughened sea water surface), Issledovaniya Zemli iz Kosmosa, 2017, No. 3, pp. 53–64.
  4. Sazonov D. S. (2017b), Modelirovanie mikrovolnovogo izlucheniya vzvolnovannoi morskoi poverkhnosti na osnove eksperimentalnykh dannykh (Simulation of microwave radiation from wind roughened sea based on experimental data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 271–287.
  5. Sazonov D. S., Mnogoparametricheskaya model radioteplovogo izlucheniya vzvolnovannoi morskoi poverkhnosti: analiz sputnikovoi informatsii i nadvodnykh izmerenii: Diss kand. fiz.-tekhn. nauk (Multiparameter model of microwave radiation of wind roughened sea: analysis of satellite information and surface measurements, Cand. phys. techn. sci. thesis), Moscow, 2018, 138 p.
  6. Sinkevich A. A., Stepanenko V. D., Dovgaluk Yu. A., Voprosy fiziki oblakov. 50 let otdelu fiziki oblakov GGO (Problems of cloud physics. 50 years of the department of physics of clouds of the State Geological Society), St. Petersburg: Asterion, 2008, 513 p.
  7. Stepanenko V. D., Shchukin G. G., Bobylev L. P., Matrosov S. Yu., Radioteplolokatsiya v meteorologii (Radiation in meteorology), Leningrad: Gidrometeoizdat, 1987, 284 p.
  8. Anguelova M. D., Gaiser P. W., Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity, Remote Sensing, 2012, Vol. 4, No. 5, pp. 1162–1189.
  9. Aziz M. A., Reising S. C., Asher W. E., Rose L. A., Gaiser P. W., Horgan K. A., Effects of air-sea interaction parameters on ocean surface microwave emission at 10 and 37 GHz, IEEE Trans. Geoscience and Remote Sensing, 2005, Vol. 43, No. 8, pp. 1763–1774.
  10. El-Nimri S. F., Jones W. L., Uhlhorn E., Ruf C., Johnson J., Black P., An improved C-band ocean surface emissivity model at hurricane-force wind speeds over a wide range of earth incidence angles, IEEE Geoscience and Remote Sensing Letters, 2010, Vol. 7, No. 4, pp. 641–645.
  11. Grodsky S. A., Kudryavtsev V. N., Bentamy A., Carton J. A., Chapron B., Does direct impact of SST on short wind waves matter for scatterometry? Geophysical Research Letters, 2012, Vol. 39, No. 12, DOI: 10.1029/2012GL052091.
  12. Gupta M., Scharien R. K., Barber D. G., Microwave Emission and Scattering from Ocean Surface Waves in the Southern Beaufort Sea, Intern. J. Oceanography, 2014, Vol. 2014, Article ID 872342, 12 p., available at:
  13. Hollinger J. P., Passive microwave measurements of sea surface roughness, IEEE Trans. Geoscience and Electronics, 1971, Vol. 9, No. 3, pp. 165–169.
  14. Liu Q., Weng F., English S. J., An Improved Fast Microwave Water Emissivity Model, IEEE Trans. Geoscience and Remote Sensing, 2011, Vol. 49, No. 4, pp. 1238–1250.
  15. Meissner T., Wentz F. J., The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 8, pp. 3004–3026.
  16. Nordberg W., Conaway J., Ross D. B., Wilheit T., Measurements of microwave emission from a foam-covered, wind-driven sea, J. Atmospheric Sciences, 1971, Vol. 28, No. 3, pp. 429–435.
  17. Padmanabhan S., Reising S. C., Asher W. E., Rose L. A., Gaiser P. W., Bobak J. P., Anguelova M., Azimuthal dependence of the microwave emission from foam generated by breaking waves at 18.7 and 37 GHz, Proc. IEEE MicroRad, 2006, pp. 131–136.
  18. Petty G. W., Katsaros K. B., The Response of the SSM/I to the Marine Environment. Part II: A Parameterization of the Effect of the Sea Surface Slope Distribution on Emission and Reflection, J. Atmospheric and Ocean Technology, 1994, Vol. 11, No. 3, pp. 617–628.
  19. Plant W. J., Irisov V., A joint active/passive physical model of sea surface microwave signatures, J. Geophysical Research: Oceans, 2017, Vol. 122, No. 4, pp. 3219–3239.
  20. Raizer V., Macroscopic Foam–Spray Models for Ocean Microwave Radiometry, IEEE Trans. Geoscience and Remote Sensing, 2007, Vol. 45, No. 10, pp. 3138–3144.
  21. Reul N., Chapron B., Zabolotskikh E., Donlon C., Quilfen Y., Guimbard S., Piolle J.-F., A revised L-band radio-brightness sensitivity to extreme winds under Tropical Cyclones: the five year SMOS-storm database, Remote Sensing of Environment, 2016, Vol. 180, pp. 274–291.
  22. Rosenkranz P. W., Rough-sea microwave emissivities measured with the SSM/I, IEEE Trans. Geoscience and Remote Sensing, 1992, Vol. 30, No. 5, pp. 1081–1085.
  23. Spreen G., Kaleschke L., Heygster G., Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophysical Research Atmospheres, 2008, V. 113, No. C2, DOI: 10.1029/2005JC003384.
  24. Stogryn A., The apparent temperature of the sea at microwave frequencies, IEEE Trans. Antennas and Propagation, 1967, Vol. 15, No. 2, pp. 278–286.
  25. Ulaby F. T., Moore R. K., Fung A. K., Microwave remote sensing: Active and passive. Volume I: Microwave remote sensing fundamentals and radiometry, Reading, MA: Addison-Wesley Publishing Co., 1981, 470 p.
  26. Webster Jr. W. J., Wilheit T. T., Ross D. B., Gloersen P., Spectral characteristics of the microwave emission from a wind-driven foam-covered sea, J. Geophysical Research, 1976, Vol. 81, No. 18, pp. 3095–3099.
  27. Wilheit T. T., A model for the microwave emissivity of the ocean’s surface as a function of wind speed, IEEE Trans. Geosciences and Electronics, 1979, Vol. 17, No. 4, pp. 244–249.
  28. Zabolotskikh E. V., Chapron B., New Geophysical Model Function for Ocean Emissivity at 89 GHz Over Arctic Waters, IEEE Geoscience and Remote Sensing Letters, 2018, Vol. 16, No. 4, pp. 573–576.
  29. Zabolotskikh E. V., Mitnik L. M., Chapron B., New approach for severe marine weather study using satellite passive microwave sensing, Geophysical Research Letters, 2013, Vol. 40, No. 13, pp. 3347–3350.
  30. Zabolotskikh E. V., Mitnik L. M., Chapron B., GCOM-W1 AMSR2 and MetOp-A ASCAT wind speeds for the extratropical cyclones over the North Atlantic, Remote Sensing of Environment, 2014, Vol. 147, pp. 89–98.
  31. Zabolotskikh E. V., Reul N., Chapron B., Geophysical Model Function for the AMSR2 C-Band Wind Excess Emissivity at High Winds, IEEE Geoscience and Remote Sensing Letters, 2016, Vol. 13, No. 1, pp. 78–81.