ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 285-292

Trends of winter humidification of the Northern Dvina and Pechora basins in the 20th – early 21st centuries based on terrestrial and satellite data

E.A. Cherenkova 1 
1 Institute of Geography RAS, Moscow, Россия
Accepted: 21.06.2019
DOI: 10.21046/2070-7401-2019-16-5-285-292
Tendencies of winter precipitation in the basins of the Northern Dvina and Pechora rivers in the 20th – early 21st centuries are in the focus of this study. Analysis of both surface and satellite data shows that positive coefficients of trends in winter precipitation with an average rate of growth of 1.4 mm/10 years in the Northern Dvina basin and 4.6 mm/10 years in the Pechora basin prevailed in 1901–1990. In the 1990s, there was a change in the direction of the trends due to the decrease in precipitation. Precipitation was decreasing in 1991–2015 at a rate of 0.6 mm/10 years in the Northern Dvina basin and at a rate of 3.1 mm/10 years in the Pechora basin. The overall decrease in winter precipitation in the Northern Dvina basin over the last fifteen years was substantially impacted by the changes in precipitation in the eastern part of the basin. At the same time, the most significant changes in precipitation in the Pechora basin have occurred in its central part. It was detected that the number of days with positive temperature in winter increased since 1991 in both basins. The rise in the number of days with thaws at meteorological stations in the Northern Dvina basin was more significant than in the Pechora basin in 1991–2015 compared to the climate norm of 1961–1990 and reached one day in average. In spite of the fact that in 2001–2015 almost all meteorological stations recorded a reduction in the value of snow water equivalent, the number of days with thaws in the north of European Russia was still insufficient for active snow melting and the significant increase of the winter river runoff. The insignificance of the melt water migration in the study area in winter 2001–2015 was indirectly confirmed by satellite data.
Keywords: precipitation, thaws, snow water equivalent, remote sensing, north of European Russia, Northern Dvina, Pechora
Full text

References:

  1. Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii (Roshydromet second assessment report on climate change and its consequences in the Russian Federation), Moscow: Rosgidromet, 2014, 1009 p.
  2. Dzhamalov R. G., Frolova N. L., Telegina E. A., Izmenenie zimnego stoka rek Evropeiskoi chasti Rossii (Winter runoff variations in European Russia), Vodnye resursy, 2015, Vol. 42, No. 6, pp. 581–588.
  3. Ivanov V. V., Alekseev V. A., Alekseeva T. A., Koldunov N. V., Repina I. A., Smirnov A. V., Arkticheskii ledyanoi pokrov stanovitsya sezonnym? (Is the Arctic Ice Cover Becoming Seasonal?), Issledovanie Zemli iz kosmosa, 2013, No. 4, pp. 50–65.
  4. Krenke A. N., Cherenkova E. A., Chernavskaya M. M., Ustoichivost’ zaleganiya snezhnogo pokrova na territorii Rossii v svyazi s izmeneniyami klimata (Snow cover stability in Russia due to climate change), Led i sneg, 2012, Vol. 52, No. 1, pp. 29–37.
  5. Lavrov S. A., Kalyuzhnyi I. L., Fizicheskie protsessy i zakonomernosti formirovaniya zimnego i vesennego stoka rek v usloviyakh izmeneniya klimata (Physical processes and regularities of formation of winter and spring river flows under climate change), Sovremennye problemy stokhasticheskoi gidrologii i regulirovaniya stoka (Current problems of stochastic hydrology and flow regulation), Proc. All-Russia Scientific Conf., Moscow, 2012, pp. 432–441.
  6. Cherenkova E. A., Vliyanie izmenenii krupnomasshtabnoi atmosfernoi tsirkulyatsii i temperatury poverkhnosti okeana na trendy letnikh osadkov na Evropeiskom severe Rossii po nazemnym i sputnikovym dannym (Influence of changes in large-scale atmospheric circulation and ocean surface temperature on the trends of summer precipitation in the north of European Russia based on terrestrial and satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 5, pp. 229–238.
  7. Cherenkova E. A., Semenov V. A., Svyaz’ zimnikh osadkov na territorii Evropy s izmeneniyami ledovitosti Arkticheskogo basseina, temperatury okeana i atmosfernoi tsirkulyatsii (A link between winter precipitation in Europe and the Arctic sea ice, sea surface temperature, and atmospheric circulation), Meteorologiya i gidrologiya, 2017, No. 4, pp. 38–52.
  8. Bulygina O. N., Groisman P. Y., Razuvaev V. N., Korshunova N. N., Changes in snow cover over Northern Eurasia since 1966, Environmental Research Letters, 2011, Vol. 6, p. 045204.
  9. Harris I., Jones P. D., Osborn T. J., Lister D. H., Updated high-resolution grids of monthly climatic observations ― the CRU TS3.10 Dataset, Intern. J. Climatology, 2014, Vol. 34(3), pp. 623–642.
  10. Huffman G. J., Adler R. F., Bolvin D. T., Gu G., Improving the global precipitation record: GPCP Version 2.1, Geophysical Research Letters, 2009, Vol. 36, p. L17808.
  11. Hurrell J. W., Decadal trends in the North Atlantic Oscillation: Regional temperature and precipitation, Science, 1995, Vol. 269, pp. 676–679.
  12. Outten S. D., Esau I., A link between Arctic sea ice and recent cooling trends over Eurasia, Climatic Change, 2012, Vol. 110, pp. 1069‒1075.
  13. Petoukhov V., Semenov V. A., A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents, J. Geophysical Research, 2010, Vol. 115, p. D21.
  14. Rodell M., Houser P. R., Jambor U., Gottschalck J., Mitchell K., Meng C.-J., Arsenault K., Cosgrove B., Radakovich J., Bosilovich M., Entin J. K., Walker J. P., Lohmann D., Toll D., The Global Land Data Assimilation System, Bull. American Meteorological Society, 2004, Vol. 85(3), pp. 381–394.
  15. Seber G. A.F., Linear Regression Analysis, John Wiley and Sons, 1977, 496 p.
  16. Semenov V. A., Martin T., Behrens L. K., Latif M., Arctic sea ice area in CMIP3 and CMIP5 climate model ensembles ― variability and change, The Cryosphere Discussions, 2015, Vol. 9, pp. 1077–1131.
  17. Sutton R. T., Dong B., Atlantic Ocean influence on a shift in European climate in the 1990s, Nature Geoscience, 2012, Vol. 5, pp. 788–792.