ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 25-33

Role of antropogenic and natural drivers in estimation of urban heat island

V.I. Demin 1 
1 Polar Geophysical Institute, Apatity, Russia
Accepted: 01.07.2019
DOI: 10.21046/2070-7401-2019-16-5-25-33
Thermal anomalies in cities (urban heat island) caused by man-made processes should be distinguished from natural microclimatic heterogeneities in the temperature field. Significant spatial variability in the thermal characteristics occurs even in flat terrain with small changes in elevation. It develops due to unequal conditions for the drainage and accumulation of cold air in different forms of relief or between areas with different properties of the underlying surface. Natural microclimatic temperature variations cannot be ignored in studies of the technogenic impact on the thermal regime of terrain as they are comparable and even exceed the values of urban heat island intensities of world largest cities and megacities. For example, many West Siberian cities were built on the uplands to avoid the risk of flooding and construction on water-saturated soils. These places were originally warmer than surrounding wetlands because cold air drainage and drier soil. Anthropogenic activity increased the temperature contrast that existed earlier. The urban heat island intensity would be unjustifiably overstated if positive temperature anomaly in cities were considered having solely anthropogenic origin. Correct estimation of the urban heat intensity can only be obtained through temperature comparison in urban and rural areas under similar microclimatic conditions.
Keywords: microclimate, urban climate, urban heat island, remote sensing
Full text

References:

  1. Voronin A. M., Orlov Yu. N., Faktory, vliyayushchie na temperaturu poverkhnosti ploskikh krovel’ (Affecting factors for the surface temperature of flat roofs), Krovel’nye i izolyatsionnye materialy, 2008, No. 4, pp. 56–59.
  2. Goltsberg I. A., Mikroklimat SSSR (Microclimate of USSR), Leningrad: Gidrometeoizdat, 1967, 282 p.
  3. Demin V. I., Zarov E. A., Mikroklimaticheskie variatsii temperatury vozdukha v usloviyakh slabovskholmlennogo rel’efa (Microclimatic air temperature variation over indistinct hilly terrain), Physics of Auroral Phenomena, 2018, Vol. 41, pp. 179–182.
  4. Demin V. I., Kozelov B. V., Elizarova N. I., Menshov Yu. V., Vliyanie mikroklimata na tochnost’ otsenki gorodskogo “ostrova tepla” (Microclimate influence on accuracy of the urban heat island estimation), Trudy Glavnoi geofizicheskoi observatorii im. A. I. Voeikova, 2017, Vol. 584, pp. 74–93.
  5. Inzhenernaya geologiya USSR. T. 2. Zapadnaya Sibir’ (Engineering geology of USSR. Vol. 2. West Siberian), Moscow: Moscow State University, 1976, 495 p.
  6. Kaushila K. A., K voprosu o territorial’nom raspredelenii i godovom khode razlichii minimal’noi temperatury vozdukha, obuslovlennykh rel’efom (On territorial distribution and the annual course of the minimum air temperature differences due to the relief), Trudy Glavnoi geofizicheskoi observatorii im. A. I. Voeikova, 1970, Vol. 264, pp. 90–96.
  7. Mishchenko Z. A., Bioklimat dnya i nochi (Daytime and nighttime bioclimate), Leningrad: Gidrometeoizdat, 1984, 280 p.
  8. Romanova E. N., Mosolova G. I., Berseneva I. A., Mikroklimatologiya i ee znachenie dlya sel’skogo khozyaystva (Microclimate and its significance for agriculture), Leningrad: Gidrometeoizdat, 1983, 246 p.
  9. Spravochnik po stroitel’stvu na vechnomerzlykh gruntakh (Handbook of construction on permafrost), Leningrad: Stroiizdat, 1977, 552 p.
  10. Sukhanov D. V., K voprosu ob osobennostyakh termicheskogo rezhima nizin i lesnykh polyan (On features of the thermal regime of lowlands and forest glades), Trudy Glavnoi geofizicheskoi observatorii, 1949, Vol. 15(77), pp. 3–73.
  11. Davy R., Esau I., Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth, Nature Communications, 2016, Vol. 7, Article No. 11690.
  12. Esau I., Miles V., Warmer urban climates for development of green spaces in northern Siberian cities, Geography. Environment. Sustainability, 2016, Vol. 9, No. 4, pp. 48–62.
  13. Esau I., Miles V., Varentsov M., Konstantinov P., Melnikov V., Spatial structure and temporal variability of a surface urban heat island in cold continental climate, Theoretical and Applied Climatology, 2019, Vol. 137, pp. 2513–2528, available at: https://doi.org/10.1007/s00704-018-02754-z.
  14. Miles V., Esau I., Seasonal and Spatial Characteristics of Urban Heat Islands in Northern West Siberian Cities, Remote Sensing, 2017, Vol. 10, Issue 9, Article No. 989.
  15. Peng S., Piao S., Ciais P., Friedlingstein P., Ottle C., Breon F.-M., Nan H., Zhou L., Ranga M. B., Surface urban heat island across 419 global big cities, Environmental Science & Technology, 2011, Vol. 46, No. 2, pp. 696–703.
  16. U. S. Environmental Protection Agency, Reducing urban heat islands: Compendium of strategies. Draft, 2008, https://www.epa.gov/heat-islands/heat-island-compendium.
  17. Urban M., Eberle J., Hüttich C., Schmullius C., Herold M., Comparison of satellite-derived land surface temperature and air temperature from meteorological stations on the pan-arctic scale, Remote Sensing, 2013, Vol. 5, Issue 5, pp. 2348–2367.