ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 336-347

Longitudinal variations of geomagnetic and ionospheric parameters during severe magnetic storms in 2015

M.A. Chernigovskaya 1 , B.G. Shpynev 1 , D.S. Khabituev 1 , K.G. Ratovsky 1 , A.Yu. Belinskaya 2 , A.E. Stepanov 3 , V.V. Bychkov 4 , S.A. Grigorieva 5 , V.A. Panchenko 6 , D. Kouba 7 , J. Mielich 8 
1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
2 A.A. Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, Russia
3 Institute of Cosmophysical Research and Aeronomy SB RAS, Yakutsk, Russia
4 Institute of Cosmophysical Researches and Radio Wave Propagation FEB RAS, Paratunka, Russia
5 Institute of Geophysics UB RAS, Ekaterinburg, Russia
6 N.V. Pushkov Institute of Terrestrial Magnetizm, Ionosphere and Radio Wave Propagation RAS, Moscow, Russia
7 Institute of Atmospheric Physics CAS, Prague, Czech Republic
8 Leibniz Institute for Atmospheric Physics, Kühlungsborn, Germany
Accepted: 04.09.2019
DOI: 10.21046/2070-7401-2019-16-5-336-347
We study the ionospheric effects of geomagnetic storms on the basis of analysis of longitudinal-temporal variations of geomagnetic and ionospheric parameters during two severe magnetic storms of the current 24th solar activity cycle, in March and June 2015. To study the variations of the geomagnetic field, the data of the global network of magnetometers INTERMAGNET in the Northern hemisphere were used. New interesting results are obtained on the irregular structure of the longitudinal variability of the geomagnetic field components in quiet conditions due to the discrepancy between the North geographical and geomagnetic poles, as well as the presence of anomalies of different spatial scales in the background magnetic field of the Earth. The longitudinal-temporal variations of the geomagnetic field components under disturbed conditions also show a strong dependence on the individual features of the magnetic storms. The longitudinal-temporal variations of the parameters of the mid-latitude ionosphere over the Eurasian continent were studied on the basis of the ionosonde chain data on the case study of the development of two severe magnetic storms in 2015. The presence of longitudinal features of the background structure and variations of the geomagnetic field leads to the fact that the registered ionospheric effects also exhibit a significant longitudinal inhomogeneity. We assume that the ionospheric response to magnetic storms is associated with disturbances in the lower thermosphere due to the strengthening of the auroral electrojet, leading to an increase in the neutral wind velocity and turbulence. This, in turn, causes the uplift the molecular gas to the ionospheric heights and reduces the electron concentration in the upper ionosphere.
Keywords: ionosonde chain, ionospheric disturbances, geomagnetic field variations,geomagnetic storm
Full text


  1. Shpynev B. G., Khabituev D. S., Chernigovskaya M. A., Issledovanie prichin dolgotnykh neodnorodnostei ionosfernykh vozmushchenii v severnom polusharii vo vremya geomagnitnykh bur’ (A study of the causes of longitudinal irregularities of ionospheric disturbances in the Northern Hemisphere during the magnetic storms), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 5, pp. 241–250, DOI: 10.21046/2070-7401-2018-15-5-241-250.
  2. Afraimovich E. L., Palamartchouk K. S., Perevalova N. P., GPS radio interferometry of travelling ionospheric disturbances, J. Atmospheric and Solar-Terrestrial Physics, 1998, Vol. 60, pp. 1205–1223.
  3. Astafyeva E., Zakharenkova I, Förster M., Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview, J. Geophysical Research Space Physics, 2015, Vol. 120, pp. 9023–9037, DOI: 10.1002/2015JA021629.
  4. Astafyeva E., Zakharenkova I., Huba J. D., Doornbos E., van den Ijssel J., Global Ionospheric and thermospheric effects of the June 2015 geomagnetic disturbances: Multi-instrumental observations and modeling, J. Geophysical Research Space Physics, 2017, Vol. 122, pp. 11716–11742, DOI: 10.1002/2017JA024174.
  5. Astafyeva E., Zakharenkova I., Hozumi K., Alken P., Coïsson P., Hairston M. R., Coley W. R., Study of the equatorial and low-latitude electrodynamic and ionospheric disturbances during the 22–23 June 2015 geomagnetic storm using ground-based and spaceborne techniques, J. Geophysical Research Space Physics, 2018, Vol. 123, pp. 2424–2440, DOI: 10.1002/2017JA024981.
  6. Buonsanto M. J., A case study of the ionospheric storm dusk effect, J. Geophysical Research, 1995, Vol. 100, No. A12, pp. 23857–23869, DOI: 10.1029/95JA02697.
  7. Buonsanto M. J., Ionospheric storms ― a review, Space Sciemce Reviews, 1999, Vol. 88, pp. 563–601.
  8. Danilov A. D., Long-term trends of foF 2 independent on geomagnetic activity, Annales Geophysicae, 2003, Vol. 21, No. 5, pp. 1167–1176.
  9. Foster J. C., Storm time plasma transport at middle and high latitudes, J. Geophysical Research, 1993, Vol. 98, pp. 1675–1689.
  10. Fuller-Rowell T. J., Codrescu M. V., Moffett R. J., Quegan S., Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophysical Research, 1994, Vol. 99, pp. 3893–3914.
  11. Goncharenko L. P., Salah J. E., van Eyken A., Howells V., Thayer J. P., Taran V. I., Shpynev B., Zhou Q., Chan J., Observations of the April 2002 geomagnetic storm by the global network of incoherent scatter radars, Annales Geophysicae, 2005, Vol. 23, No. 1, pp. 163–181.
  12. Hocke K., Schlegel K., A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995, Annales Geophysicae, 1996, Vol. 14, pp. 917–940.
  13. Klimenko M. V., Klimenko V. V., Ratovsky K. G., Goncharenko L. P., Fagundes R. R., de Jesus R., de Abreu A. J., Vesnin A. M., Numerical modeling of ionospheric effects in the middle- and lowlatitude F region during geomagnetic storm sequence of 9–14 September 2005, Radio Science, 2011, RS0D03, DOI: 10.1029/2010 RS004 590.
  14. Klimenko M. V., Klimenko V. V., Despirak I. V., Zakharenkova I. E., Kozelov B. V., Cherniakov S. M., Andreeva E. S., Tereshchenko E. D., Vesnin A. M., Korenkova N. A., Gomonov A. D., Vasiliev E. B., Ratovsky K. G., Disturbances of the thermosphere-ionosphere-plasmasphere system and auroral electrojet at 30E longitude during the St. Patrick’s Day geomagnetic storm on 17–23 March 2015, J. Atmospheric and Solar-Terrestrial Physics, 2018,Vol. 180, pp. 78–92, DOI: 0.1016/j.jastp.2017.12.017.
  15. Krasheninnikov I., Pezzopane M., Scotto C., Application of Autoscala to ionograms recorded by the AIS-Parus ionosonde, Computers and Geosciences, 2010, Vol. 36, pp. 628–635, DOI: 10.1016/j.cageo.2009.09.013.
  16. Kunitsyn V. E., Padokhin A. M., Kurbatov G. A., Yasyukevich Yu. V., Morozov Yu. V., Ionospheric TEC estimation with the signals of various geostationary navigational satellites, GPS Solutions, 2016, Vol. 20, pp. 877–884, DOI: 10.1007/s10291-015-0500-2.
  17. Laštovička J., Monitoring and forecasting of ionospheric space weather ― Effects of geomagnetic storms, J. Atmospheric and Solar-Terrestrial Physics, 2002, Vol. 64, pp. 697–705, DOI: 10.1016/S1364-6826(02)00031-7.
  18. Laštovička J., Forcing of the ionosphere by waves from below, J. Atmospheric and Solar-Terrestrial Physics, 2006, Vol. 68, pp. 479–497, DOI: 10.1016/j.jastp.2005.01.018.
  19. Liou K., Newell P. T., Anderson B. J., Zanetti L., Meng C.-I., Neutral composition effects on ionospheric storms at middle and low latitudes, J. Geophysical Research, 2005, Vol. 110, A05309, DOI: 10.1029/2004JA010840.
  20. Liu Y., Fu L., Wang J., Zhang C., Studying Ionosphere Responses to a Geomagnetic Storm in June 2015 with Multi-Constellation Observations, Remote Sensing, 2018, Vol. 10, pp. 666–686, DOI: 10.3390/rs10050666.
  21. Loewe C. A., Prölss G. W., Classification and mean behavior of magnetic storms, J. Geophysical Research, 1997, Vol. 102, No. A7, pp. 14209–14213.
  22. Lu G., Pi X., Richmond A. D., Roble R. G., Variations of total electron content during geomagnetic disturbances: a model/observation comparison, Geophysical Research Letters, 1998, Vol. 25, pp. 253–256.
  23. Prölss G. W., Werner S., Vibrationally excited nitrogen and oxygen and the origin of negative ionospheric storms, J. Geophysical Research, 2002, Vol. 107, No. A2, pp. 1016, DOI: 10.1029/2001JA900126.
  24. Reinisch B. W., Haines D. M., Bibl K., Galkin I., Huang X., Kitrosser D. F., Sales G. S., Scali J. L., Ionospheric sounding support of OTH radar, Radio Science, 1997, Vol. 32, No. 4, pp. 1681–1694.
  25. Shpynev B. G., Zolotukhina N. A., Polekh N. M., Ratovsky K. G., Chernigovskaya M. A., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Korenkova N. A., Mielich J., The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain, J. Atmospheric and Solar-Terrestrial Physics, 2018, Vol. 180, pp. 93–105, DOI: 10.1016/j.jastp.2017.10.014.
  26. Tashchilin A. V., Romanova E. B., Role of magnetospheric convection and precipitation in the formation of the “Dusk Effect” during main phase of a magnetic storm, Geomagnetism and Aeronomy, 2011, Vol. 51, No. 4, pp. 468–474.
  27. Wu C. C., Liou K., Lepping R. P., Hutting L., Plunkett S., Howard R. A., Socker D., The first super geomagnetic storm of solar cycle 24: “The St. Patrick’s day event (17 March 2015)”, Earth, Planets and Space, 2016, Vol. 68, pp. 151, DOI: 10.1186/s40623-016-0525-y.
  28. Zolotukhina N., Polekh N., Kurkin V., Rogov D., Romanova E., Chelpanov M., Ionospheric effects of St. Patrick’s storm over Asian Russia: 17–19 March 2015, J. Geophysical Research Space Physics, 2017, Vol. 122, pp. 2484–2504, DOI: 10.1002/2016JA023180.