ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 99-110

Information tools for distributed data analysis of satellite monitoring of plant areas during special examinations

V.P. Savorskiy 1, 2 , A.V. Kashnitskii 2 , O.Yu. Panova 1 
1 V.A. Kotelnikov Institute of Radioengineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow region, Russia
2 Space Research Institute RAS, Moscow, Russia
Accepted: 24.07.2019
DOI: 10.21046/2070-7401-2019-16-5-99-110
The work is devoted to the development of information tools to support specialized services needed to identify areas of illicit crop cultivation according to satellite multispectral observations. The development of these tools is based on the requirements objectively determined by the peculiarities of methods of detection of such sites by means of satellite monitoring. The developed set of tools was applied to the study of areas of technical hemp crops by means of satellite monitoring, which was a model culture for the study of spectral signatures of areas of drug-containing hemp. The statistical estimates, which were obtained as a result of the application of the developed tools, made it possible to evaluate the effectiveness of using multispectral and hyperspectral signatures, as well as spectral indices. Namely, they allowed evaluating the differences between technical hemp crops and spring grain crops (typical background culture of agricultural areas of the chernozem zone of Russia) spectral signatures during the growing season. As a measure of the effectiveness of the detection of hemp crops, the Jeffreys – Matushita distance between sets of spectral characteristics values, which describes the spectral characteristics in the visible and near-IR ranges of technical hemp and spring grains observed from satellites in the period from May to September, were used. As spectral characteristics, the spectral reflectances on TOA (SR) and spectral indices (SI) are used. According to the results of the statistical analysis of satellite observation data, which were registered by the ETM + Landsat7 and MSI Sentinel-2 instruments, it was established that the NDCI SI (introduced in the work) and NDVI can consistently detect and/or distinguish the hemp and spring crops during the majority of the growing season, i.e. from June to September. In addition, a high stability of NDCI to the interannual variability of the spectral characteristics of agricultural covers was established compared with NDVI.

Keywords: satellite monitoring, illicit crop cultivation, spectral signatures, Jeffreys – Matushita distance
Full text

References:

  1. Bartalev S. A., Egorov V. A., Loupian E. A., Plotnikov D. E., Uvarov I. A., Raspoznavanie pakhotnykh zemel’ na osnove mnogoletnikh sputnikovykh dannykh spektroradiometra MODIS i lokal’no-adaptivnoi klassifikatsii (Agricaltural lands recognition using multi-year satellite data Spectroradiometer MODIS and locally adaptive classification), Komp’yuternaya optika, 2011, Vol. 35, No. 1, pp. 103–116.
  2. Kashnitskii A. V., Balashov I. V., Loupian E. A., Tolpin V. A., Uvarov I. A., Sozdanie instrumentov dlya udalennoi obrabotki sputnikovykh dannykh v sovremennykh informatsionnykh sistemakh (Development of software tools for satellite data remote processing in contemporary information systems), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 1, pp. 156–170.
  3. Kashnitskii A. V., Loupian E. A., Balashov  I. V., Konstantinova A. M., Tekhnologiya sozdaniya instrumentov obrabotki i analiza dannykh sverkhbol’shikh raspredelennykh sputnikovykh arkhivov (Technology for Designing Tools for the Process and Analysis of Data from Very Large Scale Distributed Satellite Archives), Optika atmosfery i okeana, 2016, Vol. 29, No. 9, pp. 772–777.
  4. Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov A. V., Kashnitskii V. Yu., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., Tsentr kollektivnogo pol’zovaniya sistemami arkhivatsii, obrabotki i analiza sputnikovykh dannykh IKI RAN dlya resheniya zadach izucheniya i monitoringa okruzhayushchei sredy (IKI center for collective use of systems for satellite data archiving, processing and analysis for tasks of environmental analysis and monitoring), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 263–284.
  5. Plotnikov D. E., Bartalev S. A., Loupian E. A., Metod detektirovaniya letne-osennikh vskhodov ozimykh kul’tur po dannym radiometra MODIS (Method of summer-fall sprouts of winter crops detection with MODIS radiometer data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Vol. 5, No. 2, pp. 322–330.
  6. Savorskiy V. P., Panova O. Yu., Savchenko E. V., Metody analiza dannykh sputnikovogo monitoringa rastitel’nykh arealov dlya vyyavleniya uchastkov nezakonnogo zemledeliya pri provedenii spetsial’nykh ekspertiz (Methods for analyzing satellite monitoring data on plant areals to identify illegal crop fields in the conduct of special examinations), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 5, pp. 13–30.
  7. Tolpin V. A., Bartalev S. A., Burtsev M. A., Efremov V. Yu., Loupian E. A., Mazurov A. A., Matveev A. M., Proshin A. A., Flitman E. V., Otsenka sostoyaniya sel’skokhozyaistvennykh kul’tur na osnove mezhgodovoi dinamiki s ispol’zovaniem dannykh MODIS (Interannual dynamics based estimation of crops conditions by MODIS data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2007, Vol. 4, No. 2, pp. 380–389.
  8. Tolpin V. A., Loupian E. A., Bartalev S. A., Plotnikov D. E., Matveev A. M., Vozmozhnosti analiza sostoyaniya sel’skokhozyaistvennoi rastitel’nosti s ispol’zovaniem sputnikovogo servisa “VEGA” (Agricultural crops analysis abilities with the VEGA satellite service) Optika atmosfery i okeana, 2014, Vol. 27, No. 7, pp. 581–586.
  9. Chernyavskiy G. M., Strykov A. I., Sistemnyi podkhod i novye informatsionnye tekhnologii v zadachakh obnaruzheniya narkosoderzhashchikh rastenii (System approach and new information technologies in the detection of narcotic plants), Moscow: ANO Nauchno-informatsionnyi izdatel’skii tsentr, 2003, 207 p.
  10. Kailath T., The Divergence and Bhattacharyya Distance Measures in Signal Selection, IEEE Trans. Communication Theory, 1967, Vol. COM-15, pp. 52–60.
  11. Richards J. A., Jia X., Remote Sensing Digital Image Analysis, Berlin Heidelberg: Springer, 2006, 439 p.
  12. Rouse J. W., Haas R. H., Scheel J. A., Deering D. W., Monitoring Vegetation Systems in the Great Plains with ERTS, Proc. 3rd Earth Resource Technology Satellite (ERTS) Symp., 1974, Vol. 1, pp. 48–62.
  13. Walthall C. L., Daughtry C. S. T., Pachepsky L., Development of Cannabis Spectral Signatures and Cannabis Growth Simulation Model: Progress report FY 2003, Beltsville, MD, USA: USDA-ARS Hydrology and Remote Sensing Laboratory, 2003, 15 p.