ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 203-216

Possibilities of remote sensing of soil moisture profile based on backscattering polarimetric observations in P- and C-bands

K.V. Muzalevskiy 1 
1 L.V. Kirensky Institute of Physics SB RAS, Krasnoyarsk, Russia
Accepted: 06.09.2019
DOI: 10.21046/2070-7401-2019-16-5-203-216
In this theoretical work, a two-frequency polarimetric method is proposed for measuring moisture profiles in topsoil 30 cm thick. The problem was considered for monotonic moisture profiles, which were measured during 37 days after soil irrigation. Original values of co-polarization backscattering coefficients were calculated in scalar approximation by the Kirchhoff method and small perturbations method at a frequency of 5.4 GHz and 435 MHz, respectively. Experimentally measured moisture profiles and dielectric model of soil with a clay content of 14 % were used in the calculations. Soil moisture profiles were retrieved in the course of solving the inverse problem for the two frequencies, the cost function in which was selected as ratio of co-polarized HH-VV backscattering coefficients. Exponential function was used for modeling soil moisture profile. Standard error and square of correlation coefficient between the retrieved and measured values of soil moisture were found to be 0.01 cm3/cm3, and 0.92, respectively. These estimates were made for topsoil 30 cm thick. The obtained results remain suitable for the bistatic configuration of radar measurements. The study shows that the success of remote sensing of moisture profiles in the arable topsoil depends on selection of frequency range of radar. In this regard radar measurements are most expedient to carry out simultaneously at several frequencies of the ultra and super high frequency bands.
Keywords: backscattering, bistatic scattering, agro-soil, moisture profile, complex dielectric constant
Full text


  1. Bogorodskii V. V., Kozlov A. I., Mikrovolnovaya radiometriya zemnyh pokrovov (Microwave radiometry earth covers), Leningrad: Gidrometeoizdat, 1985, 272 p.
  2. Vasilev E. K., Rabinovich Yu. I., Shirokov K. P., Shulgina E. M., Opredelenie vlazhnosti i vlagozapasov pochv Leningradskoi oblasti SVCH-radiometricheskim metodom (Determination of moisture and moisture reserves of the soils of the Leningrad region by microwave-radiometric method), Trudy Ordena Trudovogo Krasnogo Znameni Glavnoi geofizicheskoi observatorii im. A. I. Voeikova, 1983, Vol. 478, pp. 62–71.
  3. Zerdev N. G., Kulemin G. P., Opredeleniya vlazhnosti pochv mnogokanal’nymi radiolokatsionnymi metodami (Determination using soil using multichannel radar methods), Issledovanie Zemli iz kosmosa, 1993, No. 1, pp. 90–95.
  4. Komarov S. A., Yakushev A. I., Sechenie rasseyaniya radiovoln na ploskosloistom poluprostranstve s sherokhovatoi granitsei (Radio wave scattering cross-section on a flat layered half-space with a rough boundary), Radiotekhnika i elektronika, 1998, Vol. 43, No. 6, pp. 650–656.
  5. Kondrat’ev K. Ya., Rabinovich Yu. I., Shulgina E. M., Opredelenie vlazhnosti i zapasov produktivnoi vlagi v pochve po mikrovolnovomu izlucheniyu (Determination of moisture and reserves of productive moisture in the soil by microwave radiation), Trudy Ordena Trudovogo Krasnogo Znameni Glavnoi geofizicheskoi observatorii im. A. I. Voeikova, 1976, Vol. 371, pp. 3–11.
  6. Poverkhnostnoe i podpoverkhnostnoe zondirovanie pokrovov s pomoshch’yu mnogochastotnogo polyarimetricheskogo radiolokatora s sintezirovannoi aperturoi: otchet o NIR No. 01201280948 (Surface and subsurface sounding of covers using multi-frequency polarimetric radar with synthetic aperture: Tech. Report No. 01201280948), FANO RAN FGBUN IRE RAN, Moscow, 2015, 28 p.
  7. Alemohammad S. H., Konings A. G., Jagdhuber T., Moghaddam M., Entekhabi D., Characterizing different biomes using P-band SAR polarimetry, Remote Sensing of Environment, 2018, Vol. 209, pp. 107–117.
  8. Bass F. G., Fuks I. M., Wave Scattering from Statistically Rough Surfaces, Pergamon Press, 1979, 536 p.
  9. Brekhovskikh L. M., Waves in Layered Media, New York, USA: Academic Press, 1960, 561 p.
  10. Brocca L., Crow W. T., Ciabatta L., Massari C., de Rosnay P., Enenkel M., A Review of the Applications of ASCAT Soil Moisture Products, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2017, Vol. 10, No. 5, pp. 2285–2306.
  11. Carreiras J. M. B., Quegan S., Leo T., Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions, Remote Sensing of Environment, 2017, Vol. 196, pp. 154–162.
  12. Ceraldi E., Franceschetti G., Iodice A., Riccio D., Estimating the soil dielectric constant via scattering measurements along the specular direction, IEEE Trans. Geoscience and Remote Sensing, 2005, Vol. 43, No. 2, pp. 295–305.
  13. Choudhury B., Schmugge T., Chang A., Newton R., Effect of surface roughness on the microwave emission from soils, J. Geophysical Research, 1979, Vol. 84, No. C9, pp. 5699–5706.
  14. Corana A., Marchesi M., Martini C., Ridella S., Minimizing multimodal functions of continuous variables with the ‘Simulated Annealing’ algorithm ACM, Transactions on Mathematical Software, 1987, Vol. 13, No. 3, pp. 262–280.
  15. Entekhabi D., Yueh S., O’Neill P. E., Kellogg K. H., Allen A., Bindlish R., Brown M., Chan S., Colliander A., Crlow W. T., Das N., De Lannoy G., Dunbar R. S., Edelstein W. N., Entin J. K., Escobar V., Goodman Sh. D., Jackson Th. J., Jai B., Johnson J., Kim E., Kim S., Kimball J., Koster R. D., Leon A., McDonald K. C., Moghaddam M., Mohammed P., Moran S., Njoku E. G., Piepmeier J. R., Reichle R., Rogez F., Shi J. C., Spencer M. W., Thruman S. W., Tsang L., Van Zyl J., Weiss B., West R., SMAP Handbook: Soil Moisture Active Passive, Mapping Soil Moisture and Freeze/Thaw from Space, Pasadena, CA, USA, California Institute of Technology, 2014, 192 p.
  16. Escorihuela M., Chanzy A., Wigneron J., Kerr Y., Effective soil sampling depth of the L-band radiometry: A case study, Remote Sensing of Environment, 2010, Vol. 114, No. 5, pp. 995–1001.
  17. Fletcher K., Sentinel-1: ESA’s Radar Observatory Mission for GMES Operational Services, ESA SP-1322/1, 2012, 96 p.
  18. Fung A. K., Microwave Scattering and Emissions Models and Their Applications, Norwood: Artech House, MA, 1994, 592 p.
  19. Fung A. K., Dawson M. S., Chen K. S., Hsu A. Y., Engman E. T., O’Neill P. O., Wanget J. A., A modified IEM model for: scattering from soil surfaces with application to soil moisture sensing, Proc. IEEE Intern. Geoscience and Remote Sensing Symp., NE, USA, 1996, Vol. 2, pp. 1297–1299.
  20. Fung A. K., Boisvert J., Brisco B., Interpretation of radar measurements from rough soil surface with a permittivity profile, Proc. IEEE Intern. Geoscience and Remote Sensing Symp., Singapore, 1997, Vol. 3, pp. 1376–1378.
  21. Gao H., Zhang W., Chen H., An Improved Algorithm for Discriminating Soil Freezing and Thawing Using AMSR-E and AMSR2 Soil Moisture Products, Remote Sensing, 2018, Vol. 10(1697), pp. 1–17.
  22. Gill P. E., Murray W., Algorithms for Nonlinear Least-Squares Problem, SIAM J., Numerical Analysis, 1978, Vol. 15, No. 5, pp. 977–992.
  23. Gorrab A., Zribi M., Baghdadi N., Lili-Chabaane Z., Mougenot B., Multi-frequency analysis of soil moisture vertical heterogeneity effect on radar backscatter, Intern. Conf. Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, 2014, pp. 379–384.
  24. Gradshteyn I. S., Ryzhik I. M., Tables of Integrals, Series, and Products, 6th edition, San Diego, CA: Academic Press, 2000, 1163 p.
  25. Hoeben R., Troch P. A., Assimilation of active microwave observation data for soil moisture profile estimation, Water Resources Research, 2000, Vol. 36, No. 10, pp. 2805–2819.
  26. Khankhoje U. K., van Zyl J. J., Cwik A. A., Computation of Radar Scattering From Heterogeneous Rough Soil Using the Finite-Element Method, IEEE Trans. Geoscience and Remote Sensing, 2013, Vol. 51, No. 6, pp. 3461–3469.
  27. Komarov S. A., Mironov V. L., Li S., SAR polarimetry for permafrost active layer freeze/thaw processes, IEEE Intern. Geoscience and Remote Sensing Symp., Toronto, Canada, 2002, Vol. 5, pp. 2654–2656.
  28. Konings A. G., Entekhabi D., Moghaddam M., Saatchi S. S., The Effect of Variable Soil Moisture Profiles on the P-Band Backscatter, IEEE Trans. Geoscience and Remote Sensing, 2014, Vol. 52, No. 10, pp. 6315–6325.
  29. Kutuza B., Davidkin A., Dzenkevich A., Kalinkevich A., Manakov V., Plushchev V., Shishkova O., Verba V., Vostrov E., Multi-frequency polarimetric aperture radar for surface and subsurface sensing, Proc. EuRAD, Horizon House Publications Ltd., 2004, pp. 5–12.
  30. Kwon E. Y., Park S. E., Moon W. M., Lee K. K., AirSAR data: A case study in Jeju, Korea, Geosciences J., 2002, Vol. 6, No. 4, pp. 331–339.
  31. Liou Y. A., England A. W., A land surface process/radiobrightness model with coupled heat and moisture transport in soil, IEEE Trans. Geoscience and Remote Sensing, 1998, Vol. 36, No. 1, pp. 273–286.
  32. Mironov V. L., Bobrov P. P., Fomin S. V., Multirelaxation Generalized Refractive Mixing Dielectric Model Moist Soils, IEEE Geoscience and Remote Sensing Letters, 2013, Vol. 10, No. 3, pp. 603–606.
  33. Moghaddam M., Rahmat-Samii Y., Rodriguez E., Entekhabi D., Hoffman J. P., Moller D., Pierce L. E., Saatchi S. S., Thomson M., Microwave Observatory of Sub Canopy and Subsurface (MOSS): A Mission Concept for Global Deep Soil Moisture Observations, IEEE Trans. Geoscience and Remote Sensing, 2007, Vol. 45, No. 8, pp. 2630–2643.
  34. Oh Y., Sarabandi K., Ulaby F. T., An empirical model and an inversion technique for radar scattering from bare soil surfaces, IEEE Trans. Geoscience Remote Sensing, 1992, Vol. 30, pp. 370–382.
  35. Quegan S., Lomas M., Papathanassiou K. P., Kim J-S., Tebaldini S., Giudici D., Scagliola M., Gucci P., Calibration Challenges for the Biomass P-Band SAR Instrument, Proc. IEEE Intern. Geoscience and Remote Sensing Symp., Valencia, 2018, pp. 8575–8578.
  36. Sadeghi M., Tabatabaeenejad A., Tuller M., Moghaddam M., Jones S. B., Advancing NASA’s AirMOSS P-Band Radar Root Zone Soil Moisture Retrieval Algorithm via Incorporation of Richards’ Equation, Remote Sensing, 2017, Vol. 9(1), pp. 1–17.
  37. Schmugge T., Wilheit T., Webster Jr. W., Gloersen P., Remote Sensing of Soil Moisture with Microwave Radiometers-II, NASA technical note D-8321, 1976, 34 p.
  38. Status of the Global Observing System for Climate (GCOS-195), World Meteorological Organization, October 2015, 373 p.
  39. Tabatabaeenejad A., Burgin M., Duan X., Moghaddam M., P-Band Radar Retrieval of Subsurface Soil Moisture Profile as a Second Order Polynomial: First AirMOSS Results, IEEE Trans. Geoscience and Remote Sensing, 2015, Vol. 53, No. 2, pp. 645–658.
  40. Tian S., Renzullo L. J., van Dijk A. I. J. M., Tregoning P., Walker J. P., Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response, Hydrology Earth System Sciences, 2019, Vol. 23, pp. 1067–1081.
  41. Ulaby F. T., Moore R. K., Fung A. K., Microwave remote sensing. Active and Passive. Vol. 2: Radar Remote Sensing and Surface Scattering and Emission Theory, Addison-Wesley Publishing Company, 1982, pp. 457–1064.
  42. Walker J. P., Troch P. A., Mancini M., Willgoose G. R., Kalma J. D., Profile soil moisture estimation using the modified IEM, Proc. Intern. Geoscience and Remote Sensing Symp., Singapore, 1997, Vol. 3, pp. 1263–1265.
  43. Wigneron J.-P., Jackson T. J., O’Neill P., Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS and SMAP soil moisture retrieval algorithms, Remote Sensing of Environment, 2017, Vol. 192, pp. 238–262.
  44. Yashchenko A. S., Bobrov P. P., Impact of the Soil Moisture Distribution in the Top Layer on the Accuracy Moisture Retrieval by Microwave Radiometer Data, IEEE Trans. Geoscience and Remote Sensing, 2016, Vol. 54, No. 9, pp. 5239–5246.