ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 228-240

Spatial assessment of modern forest fire regimes in Russia

A.S. Plotnikova 1 , D.V. Ershov 1, 2 , A.O. Kharitonova 1 , P.P. Shulyak 1 , S.A. Bartalev 2 , F.V. Stytsenko 2 
1 Center for Forest Ecology and Productivity RAS, Moscow, Russia
2 Space Research Institute RAS, Moscow, Russia
Accepted: 04.10.2019
DOI: 10.21046/2070-7401-2019-16-5-228-240
The fire regime determines the conditions of forest fires occurrence, distribution and long-term consequences. The paper presents the results of the assessment of current fire regimes in Russia using the LANDFIRE classification, which contains five classes depending on the fire return interval (less than 35, 36–200 and more than 200 years) and the fire severity (low/medium and high). The study used the following sets of input data: vegetation cover map, created with MODIS spectroradiometer data with a spatial resolution of 250 m; historical data spanning from 1987 to 2011, provided by forest fire protection aviation service; wildfires satellite monitoring multi-annual dataset spanning from 2000 to the present time, available to users of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data and long-term data on the fire severity to forests in the four condition categories from 2006 to present, formed on the basis of remote sensing data. The period covered by this study is 30 years ― from 1987 to 2016. The basic spatial unit of current fire regimes assessment is a continuous area of the single forest type, according to vegetation cover map. According to LANDFIRE, the method of assessing current fire regimes at the national level is based on an analysis of fire recurrence within two time intervals ― reference one and current one, as well as the fire severity to forests, per each spatial unit. In this study, the reference interval covers the period from 1987 to 2016; the current one covers the period from 2006 to 2016. As a result, a map of current fire regimes in Russia was created; the legend of the map contains the class “no fires” in addition to five initial classes of LANDFIRE. On the basis of the obtained results, the analysis of the areas of current fire regimes for all types of forest ecosystems in Russia, as well as separately for needle-leaf, deciduous and mixed forests was carried out. A similar analysis was performed for the spatial dataset related to current USA fire regimes provided by the LANDFIRE website. The study showed that, in order to map fire regimes of Russia in accordance with the LANDFIRE approach, it is necessary to extend the reference interval for estimating the fire return interval.
Keywords: fire regimes, fire return interval, fire severity, forest ecosystems
Full text

References:

  1. Bartalev S. A., Egorov V. A., Ershov D. V., Isaev A. S., Loupian E. A., Plotnikov D. E., Uvarov I. A., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii po dannym spektroradiometra MODIS (Mapping of Russia’s vegetation cover using MODIS satellite spectroradiometer data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 4, pp. 285–302.
  2. Bartalev S. A., Stytsenko F. V., Egorov V. A., Loupian E. A., Sputnikovaya otsenka gibeli lesov Rossii ot pozharov (Satellite-based assessment of Russian forest fire mortality), Lesovedenie, 2015, No. 2, pp. 83–94.
  3. Bartalev S., Egorov V., Zharko V., Loupian E., Plotnikov D., Khvostikov S., Shabanov N., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2016, 208 p.
  4. Vaganov E. A., Kh’yus M. K., Shashkin A. V., Arbatskaya M. K., Dendrokhronologicheskie metody v otsenke uglerodnogo tsikla lesnykh ekosistem (Dendrochronological methods in assessing the carbon cycle of forest ecosystems), In: Krugovorot uglerodnogo tsikla na territorii Rossii (The carbon cycle in Russia), Moscow: Nauka, 1999, pp. 96–123.
  5. Volokitina A. V., Sofronov M. A., Klassifikatsiya i kartografirovanie rastitel’nykh goryuchikh materialov (Classification and mapping of plant combustible materials), Novosibirsk: Izd. SO RAN, 2002, 314 p.
  6. Ziganshin R. A., Voronin V. I., Karbainov Yu. M., Monitoring lesnykh ekosistem Taimyra (Forest ecosystems monitoring in Taimyr), Lesnaya taksatsiya i lesoustroistvo, 2005, No. 2(35), pp. 89–95.
  7. Ivanov V. A., Korshunov N. A., Matveev P. M., Pozhary ot molnii v lesakh Krasnoyarskogo Priangar’ya (Fire from lightning in the forests of Krasnoyarsk Angara), Krasnoyarsk: SibGTU, 2004, 132 p.
  8. Korovin G. N., Andreev N. A., Aviatsionnaya okhrana lesov (Aviation forest protection), Moscow: Agropromizdat, 1988, 233 p.
  9. Loupian E. A., Ershov D. V., Bartalev S. A., Isaev A. S., Informatsionnaya sistema distantsionnogo monitoringa lesnykh pozharov i ikh posledstvii: rezul’taty poslednego desyatiletiya i perspektivy (Information system for forest fires and their consequences remote monitoring: the results of the last decade and further prospects), Aerokosmicheskie metody i geoinformatsionnye tekhnologii v lesovedenii i lesnom khozyaistve (Aerospace Methods and GIS–Technologies in Forestry and Forest Management), Proc. 5th All-Russia Conf., dedicated to the memory of V. I. Sukhikh and G. N. Korovin, Moscow: TsEPL RAN, 2013, pp. 40–43.
  10. Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Kashnitskiy A. V., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., Tsentr kollektivnogo pol’zovaniya sistemami arkhivatsii, obrabotki i analiza sputnikovykh dannykh IKI RAN dlya resheniya zadach izucheniya i monitoringa okruzhayushchei sredy (IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 263–284.
  11. Loupian E. A., Bartalev S. A., Balashov I. V., Egorov V. A., Ershov D. V., Kobets D. A., Senko K. S., Stytsenko F. V., Sychugov I. G., Sputnikovyi monitoring lesnykh pozharov v 21 veke na territorii Rossiiskoi Federatsii (tsifry i fakty po dannym detektirovaniya aktivnogo goreniya) (Satellite monitoring of forest fires in the 21st century in the territory of the Russian Federation (facts and figures based on active fires detection)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 158–175, DOI: 10.21046/2070-7401-2017-14-6-158-175.
  12. Plotnikova A. S., Ershov D. V., Shulyak P. P., Analiz statistiki pozharov v lesnom raione dlya obosnovaniya vybora prostranstvennoi edinitsy pri kartografirovanii pozharnykh rezhimov Rossii (Analysis of fire statistics for justification of selection of spatial units for mapping fire regimes in Russia), Aerokosmicheskie metody i geoinformatsionnye tekhnologii v lesovedenii, lesnom khozyaistve i ekologii (Aerospace Methods and GIS-Technologies in Forestry and Forest Management and Ecology), Proc. 6th All-Russia Conf., Moscow: TsEPL RAN, 2016, pp. 206–207.
  13. Ponomarev E. I., Bezmaternykh P. F., Ivanov V. A., Osobennosti geograficheskogo raspredeleniya pozharov v lesakh Srednei Sibiri (Features of the fire geographical distribution in Central Siberia forests), Lesnoe khozyaistvo, 2008, No. 1, pp. 46–47.
  14. Rubtsov A. V., Sukhinin A. I., Vaganov E. A., Klassifikatsiya territorii Sibiri po fakticheskoi gorimosti s ispol’zovaniem sputnikovykh dannykh (Classification of the Siberia territory by actual burning using satellite data), J. Siberian Federal University, Ser. “Biology”, 2010, Vol. 3, No. 1, pp. 30–39.
  15. Sokolov V. A., Vlasenko V. I., Vtyurina O. P., Polyakov V. I., Semechkin I. V., Farber S. K., Dinamika lesnykh ekosistem Altae-Sayanskogo ekoregiona (Dynamics of forest ecosystems in Altai-Sayan ecoregion), Lesnaya taksatsiya i lesoustroistvo, 2005, No. 2(35), pp. 125–133.
  16. Sofronov M. A., Volokitina A. V., Pirologicheskoe raionirovanie v taezhnoi zone (Forest fire zoning in the taiga), Novosibirsk: Nauka, 1990, 204 p.
  17. Stytsenko F. V., Bartalev S. A., Egorov V. A., Loupian E. A., Metod otsenki stepeni povrezhdeniya lesov pozharami na osnove sputnikovykh dannykh MODIS (Post-fire forest tree mortality assessment method using MODIS satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 254–266.
  18. Sukhinin A. I., Buryak L. V., Ponomarev E. I., Bychkov V. A., Geoinformatsionnaya sistema i distantsionnye dannye primenitel’no k zadache monitoringa narushennosti lesov Nizhnego Priangar’ya (Geoinformation system and remote data applied to the monitoring task of forest disturbances in Lower Angara region), Vestnik Tomskogo gosudarstvennogo universiteta, Prilozhenie, 2006, No. 18, pp. 179–185.
  19. Shvidenko A. Z., Shchepashchenko D. G., Klimaticheskie izmeneniya i lesnye pozhary v Rossii (Climate Changes and Wildfires in Russia), Lesovedenie, 2013, No. 5, pp. 50–61.
  20. Agee J. K., Fire ecology of Pacific Northwest forests, Washington, D. C.: Island Press, 1993, 493 p.
  21. Barrett S. W., Havlina D., Jones J., Hann W., Frame C., Hamilton D., Schon K., Demeo T., Hutter L., Menakis J., Interagency Fire Regime Condition Class Guidebook, Version 3.0, 2010, available at: https://www.landfire.gov/frcc/frcc_guidebooks.php (Aug. 08, 2018).
  22. Brown J. K., Smith J. K., Wildland fire in ecosystems: effects of fire on flora, General Technical Report RMRS GTR 42, Vol. 2, Ogden, UT: U. S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2000, 257 p.
  23. Drobyshev I., Niklasson M., Angelstam P., Majewski P., Testing for anthropogenic influence on fire regime for a 600-year period in the Jaksha area, Komi republic, East European Russia, Canadian J. Forest Research, 2004, Vol. 34, No. 10, pp. 2027–2036, DOI: 10.1139/X04-081.
  24. Frost C. C., Presettlement fire frequency regimes of the United States: A first approximation, Tall Timbers Fire Ecology Conf. Proc., Vol. 20, 1998, pp. 70–81.
  25. Hardy C. C., Menakis J. P., Long D. G., Brown J. K., Bunnell D. L., Mapping historic fire regimes for the western United States: integrating remote sensing and biophysical data, Proc. 7th Forest Service Remote Sensing Applications Conf., Nassau Bay, TX, Apr. 6–10, 1998, Bethesda, MD: American Society for Photogrammetry and Remote Sensing, 1998, pp. 288–300.
  26. Heinselman M. L., Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota, Quaternary Research 3, 1973, pp. 329–382.
  27. Kilgore B. M., Fire in ecosystem distribution and structure: western forests and scrublands, USDA Forest Service General Technical Report, 1981, pp. 58–89.
  28. Morgan P., Hardy C. C., Swetnam T. W., Rollins M. G., Long D. G., Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns, Intern. J. Wildland Fire, 2001, Vol. 10, pp. 329–342, DOI: 10.1071/WF01032.
  29. Tautenhahn S., Lichstein J. W., Jung M., Kattge J., Bohlman S. A., Heilmeier H., Prokushkin A., Kahl A., Wirth C., Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes, Global Change Biology, 2016, Vol. 22, pp. 2178–2197, DOI: 10.1111/gcb.13181.