Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 255-267
Radar, thermal and optical contrasts of sea ice in the Sea of Okhotsk during winter
L.M. Mitnik
1 , E.S. Khazanova
1 1 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
Accepted: 26.07.2019
DOI: 10.21046/2070-7401-2019-16-5-255-267
The paper presents the results of ice cover sensing on the shelf and in the Terpeniya Bay in the Sea of Okhotsk by Sentinel-1A/B synthetic aperture radar (SAR) and Landsat-8 spectral instruments in the visible and IR wavelengths with the spatial resolution of 30–100 m. A detailed study was carried out for the sea ice images and open sea surface acquired on January 7–8, 2017 under clear sky and at low air surface temperature. When analyzing the weather conditions and ice cover characteristics, the Terra MODIS images, AMSR2-retrieved sea ice concentration maps, scatterometer-derived sea surface wind fields, and weather station reports were used. Estimates of the absolute values and spatial variability of the normalized radar cross section, spectral reflectance and radiation temperature of various types of sea ice and sea surface were obtained. The features of sea ice formation and the structure of the marginal ice zone under strong wind and differences in the assessment of the thin ice concentration according to passive MW sensing data, SAR, visible and IR images are noted. The advantages of sharing remote sensing data when analyzing the characteristics of sea ice are shown. The need to install the SAR on Russian satellites to obtain operational and scientific data on the ice condition in the Arctic region is underlined.
Keywords: remote sensing, sea ice, SAR, Sentinel-1A/B, NRCS, Landsat-8, spectral reflectance, brightness temperature, Sea of Okhotsk
Full textReferences:
- Gidrometeorologiya i gidrokhimiya morei. Tom IX. Okhotskoe more. Vyp. 1. Gidrometeorologicheskie usloviya (Hydrometeorology and hydrochemistry of seas. Vol. IX. The Sea of Okhotsk. Issue 1. Hydrometeorological conditions), Glukhovskii B.Kh., Goptarev N. P., Terziev F. S. (eds.), Saint Petersburg: Gidrometeoizdat, 1998, 342 p.
- Iokhannessen O. M., Aleksandrov V. Yu., Frolov I. E., Sandven S., Pettersson L.Kh., Bobylev L. P., Kloster K., Smirnov V. G., Mironov E. U., Babich N. G., Nauchnye issledovaniya v Arktike. T. 3. Distantsionnoe zondirovanie morskikh l’dov na Severnom morskom puti: izuchenie i primenenie (Scientific research in the Arctic. Vol. 3. Remote sensing of sea ice on the Northern Sea Route: study and application), Saint Petersburg: Nauka, 2007, 512 p.
- Mezomasshtabnye konvektivnye gryady i yacheiki (Mesoscale convective ridges and cells), In: Radiolokatsiya poverkhnosti Zemli iz kosmosa (Earth radiolocation from space), Leningrad: Gidrometeoizdat, 1990, pp. 103–120.
- Mitnik M. L., Mitnik L. M., Modelirovanie mikrovolnovykh kharakteristik sistemy atmosfera-okean pri organizovannoi mezomasshtabnoi konvektsii (Modeling of microwave characteristics of organized mesoscale convection over the ocean), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2009, No. 6, pp. 147–154.
- Mitnik L. M., Khazanova E. S., Ledyanoi pokrov na shel’fe Sakhalina v raionakh dobychi i transportirovki nefti (Ice cover on the Sakhalin shelf in areas of oil production and transportation by satellite microwave sensing), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, No. 2, pp. 100–113.
- Tambovskii V. S., Pishchal’nik V. M., Atlas l’dov Yaponskogo i Okhotskogo morei (Atlas of ice of the Sea of Japan and Sea of Okhotsk), Yuzhno-Sakhalinsk: IMGiG DVO RAN, 1993, 186 p.
- Shevchenko G. V., Tambovskii V. S., Dinamika dreifa l’da na severo-vostochnom shel’fe ostrova Sakhalin po dannym izmerenii radiolokatsionnymi stantsiyami (Ice drift dynamics on the northeastern shelf of Sakhalin Island as measured by radar stations), Yuzhno-Sakhalinsk: IMGiG DVO RAN, 2018, 136 p.
- Yakunin L. P., Atlas osnovnykh parametrov ledyanogo pokrova Okhotskogo morya (Atlas of the main parameters of the Okhotsk Sea ice cover), Vladivostok: DVFU, 2012, 116 p.
- Barsi J. A., Schott J. R., Hook S. J., Raqueno N. G., Markham B., Radocinski R. G., Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration, Remote Sensing, 2014, No. 6, pp. 11607–11626.
- Cho K., Sato Y., Naoki K., Thin ice area extraction in the Sea of Okhotsk from GCOM-W1/ AMSR 2 data, The Intern. Archives Photogrammetry, Remote Sensing and Spatial Information Sciences, Proc. XXIII ISPRS Congress, 2016, Vol. XLI-B8, pp. 463–468.
- Dierking W., Sea ice monitoring by synthetic aperture radar, Oceanography, 2013, Vol. 26, No. 2, pp. 100–111.
- He T., Liang S. L., Wang D. D., Cao Y. F., Gao F., Yu Y. Y., Feng M., Evaluating land surface albedo estimation from Landsat MSS, TM, ETM plus, and OLI data based on the unified direct estimation approach, Remote Sensing of Environment, 2018, Vol. 204, pp. 181–196.
- Johansson A. M., Brekke C., Spreen G., King J. A., X-, C-, and L-band SAR signatures of newly formed sea ice in Arctic leads during winter and spring, Remote Sensing of Environment, 2018, Vol. 204, No. 1, pp. 162–180.
- Liu Y., Key J., Mahoney R., Sea and freshwater ice concentration from VIIRS on Suomi NPP and the future JPSS satellites, Remote Sensing, 2016, Vol. 8, No. 6(523), pp. 1–20.
- Mäkynen M., Karvonen J., Incidence angle dependence of first-year sea ice backscattering coefficient in Sentinel-1 SAR imagery over the Kara Sea, IEEE Trans. Geoscience Remote Sensing, 2017, Vol. 55, No. 11, pp. 6170–6181.
- Mitnik L. M., Mesoscale coherent structures in the surface wind field during cold air outbreaks over the Far Eastern seas from the satellite side looking radar, La Mer, 1992, Vol. 30, pp. 287–296.
- Mitnik L. M., Dubina V. A., The Sea of Okhotsk: Scientific and Operational Applications of Remote Sensing, In: Remote Sensing of the Asian Seas, Springer, 2018, pp. 159–175.
- Mitnik L., Dubina V., Khazanova E., New ice formation in the Okhotsk Sea and the Japan Sea from C- and L-band satellite SARS, Proc. IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS’2016), 2016, pp. 4853–4856.
- Montanaro M., Lunsford A., Tesfaye Z., Wenny B., Reuter D., Radiometric calibration methodology of the Landsat 8 Thermal Infrared Sensor, Remote Sensing, 2014, Vol. 6, pp. 8803–8821.
- Onstott R. J., Shuchman R. A., SAR measurements of sea ice, In: Synthetic Aperture Radar Marine User’s Manual, 2004, pp. 81–115.
- Shevchenko G. V., Rabinovich A. B., Thompson R. E., Sea-ice drift on the Northeastern shelf of Sakhalin Island, J. Physical Oceanography, 2004, Vol. 34, No. 11, pp. 2470–2491.
- Spreen G., Kaleschke L., Heygster G., Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophysical Research, 2008, Vol. 113, C02S03, 14 p.
- Tschudi M., Riggs G., Hall D., Román M. O., Suomi-NPP VIIRS Sea Ice Cover Algorithm Theoretical Basis Document (ATBD). Version 1.0, 2017, available at: https://viirsland.gsfc.nasa.gov/PDF/VIIRS_SeaIceCover_ATBD_V2.pdf.
- Vermote E., Justice C., Claverie M., Franch B., Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product, Remote Sensing of Environment, 2016, Vol. 85, pp. 46–56.
- Zakhvatkina N., Smirnov V., Bychkova I., Satellite SAR data-based sea ice classification: An overview, Geosciences, 2019, Vol. 9(152), 15 p.
- Zhu Z., Wang S., Woodcock C. E., Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsat 4–7, 8, and Sentinel 2 images, Remote Sensing of Environment, 2015, Vol. 159, pp. 269–277.