Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 175-191
Investigation of the dynamics of stream currents along the coast of the Sambian Peninsula (South-Eastern Baltic) based on numerical modeling and analysis of ocean color satellite images
M.N. Golenko
1 , O.Yu. Lavrova
2 1 P. P. Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Space Research Institute RAS, Moscow, Russia
Accepted: 14.08.2019
DOI: 10.21046/2070-7401-2019-16-4-175-191
On the basis of numerical modeling of passive admixture propagation and available satellite data, the process of propagation of the Vistula Lagoon waters with an increased concentration of suspended matter along the coast of the Sambian Peninsula of the South-Eastern Baltic is considered. Various regimes of water propagation are described: under the influence of alongshore stream currents as well as with the significant influence of inertial oscillations, which manifests in the distribution of zones of increased concentration of suspended matter to the wide sea area and their “twisting”. The features of atmospheric forcing causing these regimes of water propagation are described. It was obtained that in the Cape Taran region, when the wind direction changed from western to eastern with a speed of about 10 m/s, a stream current arose that was most intense in the steepest area of the slope. In this area, the zone of increased tracer concentration split into separate zones, adjacent to the coast and at a distance from the coast. The propagation of the tracer at a distance from the coast in the considered period of time was significantly affected by inertial oscillations that occurred when the wind direction changed. At moderate wind speeds of up to 8 m/s and a slight change of its direction, the area of distribution of the tracer was compact and continuous.
Keywords: numerical modeling, satellite images of ocean color data, passive tracer, alongshore stream currents, inertial oscillations
Full textReferences:
- Androsov A. A., Voltzinger N. E., Prolivy mirovogo okeana. Obshchii podkhod k modelirovaniyu (World ocean straits. A general approach to modeling), St. Petersburg: Nauka, 2005, 187 p.
- Ginzburg A. I., Bulycheva E. V., Kostianoy A. G., Solovyev D. M., Vortex dynamics in the southeastern Baltic Sea from satellite radar data, Oceanology, 2015, Vol. 55(6), pp. 805–813, https://doi.org/10.1134/S0001437015060065.
- Golenko M. N., Golenko N. N., Issledovanie rasprostraneniya passivnoi primesi i lagranzhevykh chastits v pribrezhnoi zone Yugo-Vostochnoi chasti Baltiiskogo morya (A study into the passive tracer and Lagrangian particles propagation in the coastal area of South-East Baltic), Vestnik Baltiiskogo Federal’nogo universiteta im. Immanuila Kanta, Ser. “Estestvennye nauki”, 2014, Issue 1, pp. 42–50.
- Golenko N. N., Golenko M. N., Shchuka S. A., Observation and modeling of upwelling in the Southeastern Baltic, Oceanology, 2009, Vol. 49, No. 1, pp. 15–21, https://doi.org/10.1134/S0001437009010020.
- Golenko M. N., Golenko N. N., Bukanova T. V., Issledovanie strukturnykh osobennostei pribrezhnykh termokhalinnykh frontal’nykh zon v Yugo-Vostochnoi chasti Baltiiskogo morya po dannym chislennogo modelirovaniya I kosmicheskogo monitoringa (Investigation of structural features of coastal thermohaline frontal zones in the South-East Baltic from numerical model and satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 6, pp. 125–135.
- Golenko M. N., Krayushkin E. V., Lavrova O. Yu., Issledovanie osobennostei pribrezhnykh poverkhnostnykh techenii v Yugo-Vostichnoi Baltike po rezul’tatam podsputnikovykh drifternykh eksperimentov I chislennogo modelirovaniya (Investigation of coastal surface currents in the South-East Baltic based on concurrent drifter and satellite observations and numerical modeling), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 7, pp. 280–296, DOI: 10.21046/2070-7401-2017-14-7-280-296.
- Zhurbas V. M., Stipa T., Mälkki P., Paka V. T., Kuz’mina N. P., Sklyarov V. E., Mesoscale Variability of the Upwelling in the Southeastern Baltic Sea: IR Images and Numerical Modeling, Oceanology, 2004, Vol. 44, No. 5, pp. 619–628.
- Karimova S. S., Lavrova O. Y., Solov’ev D. M., Observation of eddy structures in the Baltic Sea with the use of radiolocation and radiometric satellite data, Izvestiya. Atmospheric and Oceanic Physics, 2012, Vol. 48, No. 9, pp. 1006–1013.
- Krayushkin E. V., Lavrova O. Yu., Nazirova K. R., Alferyeva Ya. O., Soloviev D. M., Formirovanie i rasprostranenie vikhrevogo dipolya za mysom Taran v Yugo-Vostochnoi Baltike (Formation and propagation of an eddy dipole at Cape Taran in the southeast Baltic Sea), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 214–221, DOI: 10.21046/2070-7401-2018-15-4-214-221.
- Lavrova O. Yu., Sabinin K. D., Proyavleniya inertsionnykh kolebanii na sputnikovykh izobrazheniyakh morskoi poverkhnosti (Manifestations of inertial oscillations in satellite images of the sea surface), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 60–73, DOI: 10.21046/2070-7401-2016-13-21-60-73.
- Lavrova O. Yu., Kostianoy A. G., Lebedev S. A., Mityagina M. I., Ginzburg A. I., Sheremet N. A., Kompleksnyi sputnikovyi monitoring morei Rossii (Complex satellite monitoring of the Russian Seas), Moscow: IKI RAN, 2011, 472 p.
- Lavrova O. Yu., Krayushkin E. V., Solovyev D. M., Golenko M. N., Golenko N. N., Kalashnikova N. A., Demidov A. N., Vliyanie vetrovogo vozdestviya i gidrodinamicheskikh protsessov na rasprostranenie vod Kaliningradskogo zaliva v akvatorii Baltiskogo morya (Influence of wind and hydrodynamic processes on propagation of the Vistula Lagoon waters into the Baltic Sea), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 76–99.
- Golenko M. N., Golenko N. N., Emelyanov E. M., Nekrasov M. A., Role of quasi-geostrophic currents and inertial waves in elution of fine sediments in the southeastern part of the Baltic, Estuarine, Coastal and Shelf Science, 2017, Vol. 195, pp. 60–68, DOI: 10.1016/j.ecss.2017.01.004.
- Gurova E., Chubarenko B., Remote-sensing observations of coastal sub-mesoscale eddies in the south-eastern Baltic, Oceanologia, 2012, Vol. 54(4), pp. 631–654, DOI: 10.5697/oc.54-4.631.
- Gurova E., Lehmann A., Ivanov A., Upwelling dynamics in the Baltic Sea studied by a combined SAR/infrared satellite data and circulation model analysis, Oceanologia, 2013, Vol. 55, No. 3, pp. 687–707.
- Kostianoy A. G., Ginzburg A. I., Lavrova O. Y., Mityagina M. I., Satellite Remote Sensing of Submesoscale Eddies in the Russian Seas, In: The Ocean in Motion, Circulation, Waves, Polar Oceanography, Velarde M., Tarakanov R., Marchenko A. (eds.), Springer, Cham, Switzerland, 2018, pp. 397–413, available at: https://doi.org/10.1007/978-3-319-71934-4_24.
- Krayushkin E., Lavrova O., Strochkov A., Application of GPS/GSM Lagrangian mini-drifters for coastal ocean dynamics analysis, Russian J. Earth Science, 2019, Vol. 19, ES1001, DOI: 10.2205/2018ES000642.
- Lavrova O. Yu., Krayushkin E. V., Nazirova K. R., Strochkov A. Ya., Vortex structures in the Southeastern Baltic Sea: satellite observations and concurrent measurements, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Proc. SPIE 10784, 2018, 1078404, DOI: 10.1117/12.2325463.
- Männik A., Merilain M., Verification of different precipitation forecasts during extended winter-season in Estonia, HIRLAM Newsletter, 2007, Vol. 52, pp. 65–70.
- Mellor G. L., User’s Guide for a Three-dimensional, Primitive Equation, Numerical Model. The revision, Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, 2004, 56 p.
- Zhurbas V., Laanemets J., Vahteraa E., Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea, J. Geophysical Research, 2008, Vol. 113, C05004, DOI: 10.1029/2007JC004280.