ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 222-232

On the dynamics of artificial slick band in the coastal zone of the Black Sea

O.V. Shomina 1 , I.A. Kapustin 1, 2 , A.V. Ermoshkin 1 , S.A. Ermakov 1, 2 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
2 Volga State University of Water Transport, Nizhniy Novgorod, Russia
Accepted: 05.06.2019
DOI: 10.21046/2070-7401-2019-16-4-222-232
It is well known that film slicks on the sea surface can reflect various geophysical processes in the upper layer of the ocean and in the atmosphere. Banded slick structures that appear on SAR images of the sea surface at low and moderate wind speeds are usually associated with sea currents. This paper presents the results of the first experiments to study the dynamics of an artificial slick band in the field of marine current and wind. It is shown that the contribution of wind to the propagation of a slick band can be significant, and at certain stages of the band dynamics the influence of spreading effects can be neglected. For these quasi-stationary sections of the slick band an empirical relationship between the band width and the surface velocity is obtained. An advantage of the proposed approach is based on the possibility of obtaining the spatial structure of the surface velocity along a slick band accor­ding to the information regarding the band shape and hydrometeorological measurements at any section of it. The approach may be effective in verifying remote sensing data.
Keywords: marine currents, slick band, sea surface, surfactants
Full text

References:

  1. Ermakov S. A., Vliyanie plenok na dinamiku gravitatsionno-kapillyarnykh voln (Impact of surfactant films on the dynamics of gravity-capillary waves), Nizhny Novgorod: IPF RAN, 2010, 163 p.
  2. Ermakov S. A., Kapustin I. A., Lazareva T. N., Shomina O. V., Eksperimental’noe issledovanie razrushe­niya poverkhnostnykh plenok obrushivayushchimisya gravitatsionnymi volnami. Predvaritel’nye rezul’taty (Experimental investigation of the disruption of surface films due to breaking gravity waves. Preliminary results), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 1, pp. 72–79.
  3. Ermakov S. A., Lavrova O. Yu., Kapustin I. A., Makarov E. V., Sergievskaya I. A., Issledovanie osobennostei geometrii plenochnykh slikov na morskoi poverkhnosti po dannym sputnikovykh radiolokatsionnykh nablu­denii (Investigation of peculiarities of the geometry of film slicks on the sea surface based on radar remote sensing data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 3, pp. 97–105.
  4. Ermakov S. A., Ermoshkin A. V., Kapustin I. A., Ob effekte szhatiya plenochnogo slika (On the effect of compression of film slick), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 288–294.
  5. Ermoshkin A. V., Kapustin I. A., Issledovanie osobennostei rastekaniya plenok poverkhnostno-aktivnykh veshchestv na poverkhnosti vnutrennikh vodoemov morskim navigatsionnym radiolokatorom (Investigation of the peculiarities of surface films spreading on the surface of internal reservoirs on the base of marine navigation radar data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 6, pp. 136–142.
  6. Kapustin I. A., Ermoshkin A. V., Bogatov N. A., Molkov A. A., Ob otsenke vklada privodnogo vetra v kinematiku slikov na morskoi poverkhnosti v usloviyakh ogranichennykh razgonov volneniya (On the estimation of the contribution of near-surface wind to the kinematics of slick on the sea surface under conditions of finite wave fetch), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 163–172.
  7. Lavrova O. Yu., Mityagina M. I., Sabinin K. D., Serebryanyi A. N., Izuchenie gidrodinamicheskikh protsessov v shel’fovoi zone na osnove sputnikovoi informatsii i dannykh podsputnikovykh izmerenii (Investigation of hydrodynamic processes in the shelf zone based on the satellite data and subsatellite measurements), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 98–123.
  8. Lavrova O. Yu., Mityagina M. I., Kostyanoi A. G., Sputnikovye metody vyyavleniya i monitoringa zon ekologicheskogo riska morskikh akvatorii (Satellite methods of registration and monitoring of the marine zones of ecological risk), Moscow: IKI RAN, 2016, 334 p.
  9. Malinovskii V. V., Dulov V. A., Korinenko A. E., Bolshakov A. N., Smolov V. E., Naturnye issledovaniya dreifa iskusstvennykh tonkikh plenok na morskoi poverkhnosti (Field investigation of the drift of artificial thin films on the sea surface), Izvestiya Rossiiskoi akademii nauk. Fizika atmosfery i okeana, 2007, Vol. 43, No. 1, pp. 117–127.
  10. Ermakov S., Kapustin I., Sergievskaya I., Remote sensing and in situ observations of marine slicks associated with inhomogeneous coastal currents, Proc. SPIE Intern. Society for Optical Engineering, 2011, Vol. 8175, No. 81750R.
  11. Ermakov S., Kapustin I., Molkov A., Leshev G., Danilicheva O., Sergievskaya I., Remote sensing of evolution of oil spills on the water surface, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Proc. SPIE, 2018, Vol. 10784, No. 107840L.
  12. Espedal H. A., Johannessen O. M., Johannessen J. A., Dano E., Lyzenga D. R., Knulst J. C., COASTWATCH’95: ERS 1/2 SAR detection of natural film on the ocean surface, J. Geophysical Research: Oceans, 1998, Vol. 103, No. C11, pp. 24969–24982.
  13. Fingas M., Introduction to Oil Spill Modeling, In: Oil Spill Science and Technology, Elsevier: Gulf Profes­sional Publishing, 2017, pp. 419–453.
  14. Ivanov A. Y., Ginzburg A. I., Oceanic eddies in synthetic aperture radar images, J. Earth System Science, 2002, Vol. 111, No. 3, pp. 281–295.
  15. Kapustin I. A., Shomina O. V., Ermoshkin A. V., Bogatov N. A., Kupaev A. V., Molkov A. A., Ermakov S. A., On Capabilities of Tracking Marine Surface Currents Using Artificial Film Slicks, Remote Sensing, 2019, Vol. 11, No. 840.
  16. Lavrova O. Yu., Sabinin K. D., Fine spatial structure of flows on satellite radar image of the Baltic Sea, Doklady Earth Sciences, 2016, Vol. 467, No. 2, pp. 427–431.
  17. Lavrova O., Serebryany A., Bocharova T., Mityagina M., Investigation of fine spatial structure of currents and submesoscale eddies based on satellite radar data and concurrent acoustic measurements, Proc. SPIE Intern. Society for Optical Engineering, 2012, Vol. 8532, No. 85320L.
  18. Lavrova O., Serebryany A., Bocharova T., Investigation of small scale hydrodynamic processes using high resolution SAR imagery and ADCP data, 2013 European Space Agency Living Planet Symp., 2013, pp. 9–13.
  19. Marmorino G. O., Smith G. B., Toporkov J. V., Sletten M. A., Perkovic D., Frasier S. J., Evolution of ocean slicks under a rising wind, J. Geophysical Research: Oceans, 2008, Vol. 113, No. C04030.
  20. Ochadlick J. A. R., Cho P., Evans‐Morgis J., Synthetic aperture radar observations of currents colocated with slicks, J. Geophysical Research, 1992, Vol. 97, No. C4, pp. 5325–5330.
  21. Rohrs J., Christensen K. H., Drift in the uppermost part of the ocean, Geophysical Research Letters, 2015, Vol. 42, pp. 10349–10356.
  22. Wu J., Sea-surface drift currents induced by wind and waves, J. Geophysical Research, 1983, Vol. 13, No. 8, pp. 1441–1451.