Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 282-289
Ionosphere parameters determination using the new processing technique for the Irkutsk incoherent scatter radar
D.S. Khabituev
1 , B.G. Shpynev
1 , A.G. Setov
1 1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
Accepted: 01.07.2019
DOI: 10.21046/2070-7401-2019-16-4-282-289
The work is devoted to the description of a new technique for secondary processing of the Irkutsk incoherent scatter radar (IISR) data. The new processing technique includes a set of software that conduct multi-parameter full-profile fitting from primary Irkutsk radar data. The adaptive simplex processor (ASP) is used as the core of the new processing software program. ASP is a set of software algorithms based on genetic sorting technology. The ASP significantly improves the retrieval accuracy of ionospheric parameters: electron density, electron and ion temperatures, plasma drift velocity, plasma ion composition. In addition, a modified radar equation is used in the new processing technique. The modified radar equation takes into account the refraction of the electromagnetic wave of the probing radar signal during its passage through the ionosphere. Despite the large number of starting variables and a large amount of computation, due to ASP we managed to keep the computational speed of the new technique at a low level. The testing of the new technique was conducted on the Irkutsk radar data for 2000. The results show an unprecedented accuracy of fitting the starting power profiles and spectrum of the Irkutsk radar. New estimates of the plasma drift velocity along the radar vision line in which almost no dependence on height are obtained. Also, new data of the relative ion composition with the presence of heavy ions in the lower ionosphere and light ions in the topside ionosphere are obtained.
Keywords: ionosphere, incoherent scatter
Full textReferences:
- Zherebtsov G. A., Zavorin A. V., Medvedev A. V., Nosov V. E., Potekhin A. P., Shpynev B. G., Irkutskii radar nekogerentnogo rasseyaniya (The Irkutsk incoherent scatter radar), Radiotekhnika i elektronika, 2002, Vol. 47, No. 11, pp. 1339–1345.
- Medvedev A. V., Zavorin A. V., Kushnarev D. S., Shpynev B. G., Modernizatsiya apparatno-programmnogo kompleksa Irkutskogo radara NR. Osnovnye elementy novoi, mnogokanal’noi sistemy registratsii (The software complex modernization for Irkutsk scatter incoherent radar. The main elements of the new multi-channel registration system), Solnechno-zemnaya fizika, 2004, Vol. 5, pp. 107–110.
- Potekhin A. P., Medvedev A. V., Zavorin A. V., Kushnarev D. S., Lebedev V. P., Lepetaev V. V., Shpynev B. G., Tsifrovye sistemy registratsii i upravleniya Irkutskogo radara nekogerentnogo rasseyaniya (Digital registration and control systems for the Irkutsk incoherent scatter radar), Solnechno-zemnaya fizika, 2008, Vol. 11, pp. 77–86.
- Tashchilin A. V., Romanova E. B., Modelirovanie svoistv plazmosfery pri spokoinykh i vozmushchennykh usloviyakh (Simulating of plasmasphere properties under quiet and disturbed conditions), Geomagnetizm i aeronomiya, 2014, Vol. 54, No. 1, pp. 1–10.
- Khabituev D. S., Shpynev B. G., Variatsii vysoty perekhoda O+/H+ nad Vostochnoi Sibir’yu po dannym Irkutskogo radara NR i PES GPS (Variations of the O+/H+ transition height over Eastern Siberia according to the Irkutsk incoherent scatter radar data and TEC GPS data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 1, pp. 107–117.
- Shpynev B. G., Voronov A. L., Minimizatsiya nelineinogo funktsionala nevyazki v zadachakh potokovoi obrabotki eksperimental’nykh dannykh (Minimization of the nonlinear residual functional in problems of stream processing of experimental data), Vychislitel’nye metody i programmirovanie, 2013, Vol. 14, pp. 503–515.
- Farley D. T., A theory of incoherent scattering of radio waves by a plasma. The effect of unequal ion and electron temperatures, J. Geophysical Research, 1966, Vol. 71, pp. 4091–4098.
- Farley D. T., Incoherent scatter correlation function measurement, Radio Science, 1969, Vol. 4, Issue 10, pp. 935–953.
- Farley D. T., Multiple-pulse incoherent-scatter correlation function measurements, Radio Science, 1972, Vol. 7, pp. 661–666.
- Holt J. M., Rhoda D. A., Tetenbaum D., Van Eyken A. P., Optimal Analysis of Incoherent Scatter Radar Data, Radio Science, 1992, Vol. 27, pp. 435–447.
- Kudeki E., Woodman R. F., Feng Z., Incoherent scatter radar plasma density measurements at Jicamarca using a transverse-mode differential-phase method, Geophysical Research Letters, 2003, Vol. 30, p. 1255.
- Liu L., Wan W., Zhang M.-L., Ning B., Zhang S.-R., Holt J. M., Variations of topside ionospheric scale heights over Millstone Hill during the 30-day incoherent scatter radar experiment, Annales Geophysicae, 2007, Vol. 25, pp. 2019–2027.
- Potekhin A. P., Berngardt O. I., Radar equations in the radio wave backscattering problem, Radiophysics and Quantum electronics, 2000, Vol. 43, pp. 484–492.
- Scherbakov A. A., Medvedev A. V., Kushnarev D. S., Correlation method for determining the ionospheric plasma drift velocity at the Irkutsk incoherent scattering radar, Geomagnetism and Aeronomy, 2009, Vol. 49, pp. 1028–1033.
- Shpynev B. G., Incoherent scatter Faraday rotation measurements on a radar with single linear polarization, Radio Science, 2004, Vol. 3, Issue 3, DOI: 10.1029/2001RS002523.
- Shpynev B. G., Refraction and Faraday rotation in incoherent scattering radar technique, Radio Science, 2017, Vol. 52, pp. 1067–1080.
- Webb P. A., Essex E. A., A dynamic diffusive equilibrium model of the ion densities along plasmaspheric magnetic flux tubes, J. Atmospheric and Solar-Terrestrial Physics, 2001, Vol. 63, pp. 1249–1260.
- Woodman R. F., Hagfors T., Method for the measurement of vertical ionospheric motion near magnetic equator by incoherent scattering, J. Geophysical Research, 1969, Vol. 74, pp. 1205–1212.