ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 124-136

Thermodynamic approach to satellite mapping of accumulated ecological losses of forest ecosystems

V.I. Gornyy 1 , A.V. Kiselev 1 , S.G. Kritsuk 1 , I.Sh. Latypov 1 , A.A. Tronin 1 
1 Scientific Research Center for Ecological Safety RAS, Saint Petersburg, Russia
Accepted: 22.04.2019
DOI: 10.21046/2070-7401-2019-16-4-124-136
Evapotranspiration of forest landcover could be a measure of the ecosystem health as we learn from the theoretical thermodynamics. To compute ecological losses of the forest ecosystem, we introduced an ecological damage index as a ratio of evapotranspiration decrement of damaged ecosystem to the evapotranspiration of the healthy one. Ecological losses were computed as a product of ecological damage index and an ecosystem cost. We discuss two ways to select a healthy ecosystem. The source data are MODIS/Terra Evapotranspiration 8-Day grid and Vegetation Map of Russia (Space Research Institute RAS product). The final products are a map of specific ecological losses of Leningrad Region and a rating of administrative districts by ecological losses. Finally, we computed ecological losses for all forests of Leningrad Region. We conclude that thorough verification of this new methodology is needed. In the future, it opens a way to automatic satellite mapping of forest ecosystem ecological losses.
Keywords: forest ecosystem, thermodynamics, damage, satellite, remote sensing, mapping, ecological losses
Full text


  1. Bartalev S. A., Egorov V. A., Ershov D. V., Isaev A. S., Loupian E. A., Plotnikov D. E., Uvarov I. A., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii po dannym spektroradiometra MODIS (Mapping of Russia’s vegetation cover using MODIS satellite spectroradiometer data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 4, pp. 285–302.
  2. Gornyy V. I., Kosmicheskie izmeritel’nye metody infra-krasnogo teplovogo diapazona pri monitoringe potentsial’no opasnykh yavlenii i obʺektov (Satellite based measuring remote sensing methods of infrared-thermal spectral band wile monitoring natural and technogenic hazardous events), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2004, Vol. 1, No. 1, pp. 10–16.
  3. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Termodinamicheskii podkhod dlya distantsionnogo kartografirovaniya narushennosti ekosistem (Thermodynamic approach for mapping disturbance of ecosystems by remote sensing methods), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 2, pp. 179–194.
  4. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Tronin A. A., Kiselev A. V., Brovkina O. V., Filippovich V. E., Stankevich S. A., Lubskii N. S., Teplofizicheskie svoistva poverkhnosti gorodskoi sredy (po rezul’tatam sputnikovykh sʺemok Sankt-Peterburga i Kieva) (Thermophysical properties of land surface in urban area (by satellite remote sensing of Saint Petersburg and Kiev), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 74–89.
  5. Kalabin G. V., Evdokimova G. A., Gornyy V. I., Otsenka dinamiki rastitel’nogo pokrova narushennykh territorii v protsesse snizheniya vozdeistviya kombinata “Severonikel” na okruzhayushchuyu sredu (Estimation of dynamics of grows of derelict lands in process of deleterious effect decrease of OJSC “Severonickel Combine” on environment), Gornyi zhurnal, 2010, No. 2, pp. 74–77.
  6. Kalabin G. V., Moiseenko T. I., Gorny V. I., Kritsuk S. G., Soromotin A. V., Satellite monitoring of natural environment at Olimpiada gold open-cut mine, J. Mining Science, 2013, Vol. 49, No. 1, pp. 160–166.
  7. Kalabin G. V., Gorny V. I., Kritsuk S. G., Satellite monitoring of vegetation mantle response to the Sorsk copper-molybdenum mine impact, J. Mining Science, 2014, Vol. 50, No. 1, pp. 155–162.
  8. Kalabin G. V., Gornyy V. I., Kritsuk S. G., Environmental appraisal of the area of Kachkanar mining-and-processing plant by satellite monitoring data, J. Mining Science, 2016, Vol. 52, No. 2, pp. 394–400.
  9. Kalabin G. V., Gornyi V. I., Davidan T. A., Kritsuk S. G., Tronin A. A., Recovery of Tundra Ecosystem after Closure of the Valkumei Mine in Chukotka, J. Mining Science, 2018, Vol. 54, No. 2, pp. 315–322.
  10. Kritsuk S. G., Gornyy V. I., Kalabin G. V., Latypov I. Sh., Zakonomernosti sezonnykh tsiklov vegetatsionnogo indeksa ekosistem v raione Sorskogo gorno-metallurgicheskogo kompleksa (Regularities of Vegetation Index Annual Cycles in the Region of Sorsk Mining and Metallurgical Complex), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 13, pp. 228–237.
  11. Kritsuk S. G., Gornyy V. I., Latypov I. Sh., Povyshenie detal’nosti sputnikovogo kartografirovaniya teplofizicheskikh kharakteristik zemnoi poverkhnosti (Spatial resolution improvement of satellite mapping of thermal properties of land surface), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 5, pp. 277–290.
  12. Lebedev Yu. V., Metodologiya, printsipy i praktika otsenki lesnykh ekosistem (Methodology, Principles and Practice of Forest’s Ecosystems Estimation), Lesnoi zhurnal, 2015, No. 1, pp. 9–20.
  13. Federal Service for Supervision in the Field of Environmental Management: Order No. 193, Date 25.04.2012.
  14. Crist E. P., Cicone R. C., Application of the Tasseled-Cap concept to simulated Thematic Mapper data, Photogrammetric Engineering and Remote Sensing, 1984, Vol. 50, pp. 343−352.
  15. Jorgensen J. S., Svirezhev Yu. M., Towards a Thermodynamic Theory for Ecological Systems, Oxford: Elsevier, 2004, 366 p.
  16. Masek J. G., Huang Ch., Wolfe R., Cohen W., Hall F., Kutler J., Nelson P., North American forest disturbance mapped from a decadal Landsat record, Remote Sensing of Environment, 2008, Vol. 112, Issue 6, pp. 2914–2926.
  17. Mu Q., Zhao M., Running S. W., Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sensing of Environment, 2011, Vol. 115, Issue 8, pp. 1781–1800.
  18. Mu Q., Zhao M., Running S. W., MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3), Algorithm Theoretical Basis Document, Collection 5, NASA Headquarters, Numerical Terradynamic Simulation Group, The University of Montana, 2013, 55 p.
  19. Running S., Mu Q., Zhao M., MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006, NASA EOSDIS Land Processes DAAC, 2017, DOI: 10.5067/MODIS/MOD16A2.006.
  20. van de Bund W., Solimini A. G., Ecological Quality Ratios for Ecological Quality Assessment in Inland and Marine Waters, European Commission, Directorate-General Joint Research Centre, Institute for Environment and Sustainability, Luxembourg, 2007, 24 p.