ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 247-255

A study of aerosol characteristics over the Black Sea by the FIRMS system during forest fires in 2007–2018

D.V. Kalinskaya 1 , D.A. Ryabokon 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 24.07.2019
DOI: 10.21046/2070-7401-2019-16-4-247-255
Statistical analysis of fires data provided by FIRMS system is carried out using MODIS and VIIRS satellite radiometers for the period 2007–2018. On the basis of methods of image processing in the infrared range (4 micron channel), variations of the radiation intensity from fires are investigated from the MODIS and VIIRS data. Processing is carried out for thermally active points located near the Black Sea region on the basis of satellite data for the research period. Fire maps with the highest number of fires from satellite data are presented. The main optical and microphysical characteristics of atmospheric aerosol for the year, months and dates with the highest number of fires for the Black Sea region are analyzed. A complex variability analysis of the main optical characteristics is carried out together with analyses of satellite images and air mass transfer. The dates of maximum impact of burning biomass on the atmosphere resulting from fires recorded on the coast and in the areas close to the Black Sea region are identified. A search of a possible source of transport is carried out for the time of peak number of thermally active points by MODIS and VIIRS in the study period.
Keywords: EOSDIS, MODIS, VIIRS, AERONET, 7-day back trajectories, Black Sea
Full text


  1. Bondur V. G., Gordo K. A., Kladov V. L., Prostranstvenno-vremennye raspredeleniya ploshchadei prirodnykh pozharov i emissii uglerodsoderzhashchikh gazov i aerozolei na territorii Severnoi Evrazii po dannym kosmicheskogo monitoringa (Temporal-spatial distributions of natural firesareas and emissions of carbon-containing gases and aerosols in the territory of Northern Eurasia according to space monitoring data), Issledovanie Zemli iz kosmosa, 2016, No. 6, pp. 3–20.
  2. Kabanov M. V., Panchenko M. V., Rasseyanie opticheskikh voln dispersnymi sredami. Chast’ III. Atmosfernyi aerozol’ (Optical wave scattering by dispersed environment. Part III. Atmospheric Aerosol), Tomsk: Izd. Tomskogo filiala SO RAN, 1984, 189 p.
  3. Kondrat’ev K. Ya., Grigor’ev A. A., Lesnye pozhary kak komponent prirodnoi ekodinamiki (Forest fires as a component of natural ecodynamics), Optika atmosfery i okeana, 2004, Vol. 17, No. 4, pp. 279–292.
  4. Panov A. V., Prokushkin A. S., Bryukhanov A. V., Korets M. A., Ponomarev E. I., Sidenko N. V., Zrazhevs­kaya G. K., Timokhina A. V., Andreae M. O., A complex approach for the estimation of carbonaceous emission from wildfires in Siberia), Russian Meteorology and Hydrology, 2018, Vol. 43, No. 5, pp. 295–301.
  5. Rakhimov R. F., Kozlov V. S., Panchenko M. V., Tumakov A. G., Shmargunov V. P., Svoistva atmosfernogo aerozolya v dymovykh shleifakh lesnykh pozharov po dannym spektronefelometricheskikh izmerenii (Properties of atmospheric aerosol in the plumes of forest fires according to the spectronephelometric measurements), Optika atmosfery i okeana, 2014, Vol. 27, No. 02, pp. 126–133.
  6. Chen Y., Velicogna I., Famiglietti J. S., Randerson J. T., Satellite observations of terrestrial water storage provide early warning information about drought and fire season severity in the Amazon, J. Geophysical Research Biogeosciences, 2013, Vol. 118, pp. 495–504, DOI: 10.1002/jgrg.20046.
  7. Chu D. A., Kaufman Y. J., Ichoku C., Remer L. A., Tanré D., Holben B. N., Validation of MODIS aerosol optical depth retrieval over land, Geophysial Research Letters, 2002, Vol. 29(12), DOI: 10.1029/2001GL013205.
  8. Chuvieco E., Giglio L., Justice C., Global characterization of fire activity: toward defining fire regimes from Earth observation data, Global Change Biology, 2008, Vol. 14, pp. 1488–1502, DOI: 10.1111/j.1365-2486.2008.01585.x.
  9. Glasius M., Cour A., Lohse C., Fossil and nonfossil carbon in fine particulate matter: A study of five European cities, J. Geophysical Research, 2011, Vol. 116, No. D11302, DOI: 10.1029/2011JD015646.
  10. Ichoku C., Ellison L. T., Yue Y., Wang J., Kaiser J. W., Fire and Smoke Remote Sensing and Modeling Uncertainties: Case Studies in Northern Sub-Saharan Africa, Geophysical Monograph Series, 2016, Vol. 223, pp. 215–230, DOI: 10.1002/9781119028116.ch14.
  11. Ji Y., Stocker E., Reply to comment by L. Giglio et al. on Seasonal, interseasonal, and interannual variability of global land fires and their effects on atmospheric aerosol distribution, J. Geophysical Research, 2003, Vol. 108, No. D24, p. 4755, DOI: 10.1029/2003JD004115.
  12. Justice C. O., Giglio L., Korontzi S., Roy D., Owens J., Alleaume S., Morisette J., Roy D., Petitcolin F., Descloitres J., Kaufman Y., Global fire products from MODIS, Remote Sensing of Environment, 2002, Vol. 83, pp. 245–263.
  13. Panchenko M. V., Zhuravleva T. B., Terpugova S. A., Polkin V. V., Kozlov V. S., An empirical model of optical and radiative characteristics of the tropospheric aerosol over West Siberia in summer, Atmospheric Measurement Technique, 2012, Vol. 5, No. 7, p. 1513–1527.
  14. Tansey K., Beston J., Hoscilo A., Page S. E., Paredes Hernández C. U., Relationship between MODIS fire hot spot count and burned area in a degraded tropical peat swamp forest in Central Kalimantan, Indonesia, J. Geophysical Research, 2008, Vol. 113, No. D23112, DOI: 10.1029/2008JD010717.