ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 33-44

On determination of the Earth’s surface small “instant” vertical displacements by GNSS-techniques

N.V. Shestakov 1, 2 , D.V. Sysoev 1, 2 , M.D. Gerasimenko 1, 2 , N.N. Titkov 3 , A.L. Verkhoturov 4 , N.A. Gagarskii 2 , A.K. Kishkina 2 , M. Guojie 5 , H. Takahashi 6 
1 Institute of Applied Mathematics FEB RAS, Vladivostok, Russia
2 Far Eastern Federal University, Vladivostok, Russia
3 Kamchatka Branch, Geophysical Service RAS, Petropavlovsk-Kamchatsky, Russia
4 Computing Center FEB RAS, Khabarovsk, Russia
5 Institute of Earthquake Forecasting, China Earthquake Administration, Beijing, China
6 Institute of Seismology and Volcanology, Faculty of Science, Hokkaido University, Sapporo, Japan
Accepted: 11.04.2019
DOI: 10.21046/2070-7401-2019-16-4-33-44
Mathematical modeling of various natural and man-made processes is based on the Earth’s surface displacement data, to obtain which the Global Positioning Systems GPS and GLONASS are widely used. The “instant” vertical surface displacements occurred at short time intervals (from seconds to minutes) are the subject of special interest. Based on the experiment using the moving GNSS antenna, the paper investigates the problem of detection ability, accuracy and reliability of determination of small “instant” displacements ranging from 6.4 to 32 mm by the high-precision and most frequently used software packages BERNESE, GAMIT/GLOBK and GIPSY-OASIS and standard geodynamic GNSS data processing techniques. It is shown that all antenna shifts associated with the investigated displacement range could be confidently resolved from the results of daily static GPS/GLONASS data processing performed by the BERNESE and GAMIT/GLOBK packages. The GIPSY-OASIS software is not recommended for the determination of subcentimeter level displacements due to high dispersion and relatively low precision of the obtained coordinate solutions. Joint processing of GPS and GLONASS signals slightly improves the precision determination of displacements. The formal root-mean-square errors of the Earth’s surface displacements calculated based on coordinate errors resulting from the GNSS data processing are not realistic in some cases and need further rescaling.
Keywords: GLONASS/GPS-measurements, “instant” vertical displacements, experiment using the moving GNSS-antenna, accuracy of displacement determination, hypothesis testing
Full text


  1. Bolshakov V. D., Gaidaev P. A., Teoriya matematicheskoi obrabotki geodezicheskikh izmerenii (Theory of mathematical processing of geodetic measurements), Moscow: Nedra, 1977, 367 p.
  2. Kaftan V. I., Sidorov V. A., Ustinov A. V., Sravnitel’nyi analiz tochnosti lokal’nogo monitoringa dvizhenii i deformatsii zemnoi poverkhnosti s ispol’zovaniem global’nykh navigatsionnykh sputnikovykh sistem GPS i GLONASS (A comparative analysis of the accuracy attainable for the local monitoring of Earth’s surface movements and deformation using the GPS and GLONASS navigation satellite systems), Vulkanologiya i seismologiya, 2017, No. 3, pp. 50–58.
  3. Pupatenko V. V., Shestakov N. V., Modelirovanie shuma v ryadakh visokochastotnykh GNSS-koordinat, poluchaemykh v rezhime real’nogo vremeni (Noise modeling of high-frequency real-time coordinate time series), Uspekhi sovremennogo estestvoznaniya, 2017, No. 2, pp. 140–144.
  4. Fyalkovskii A. L., Razrabotka i issledovanie tekhnologicheskikh reshenii povysheniya kachestva geodezicheskogo monitoringa dinamicheskikh ob’ektov s ispolzovaniem GNSS: Diss. kand. tekhn. nauk (Development and investigation of technological solutions for quality improvement of dynamic objects geodetic monitoring by GNSS-techiques, Cand. tech. sci. thesis), Moscow, 2015, 152 p.
  5. Altamimi Z., Rebischung P., Metivier L., Collilieux X., ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, J. Geophysical Research: Solid Earth, 2016, Vol. 121, pp. 6109–6131.
  6. Bernese GPS Software Version 5.2., Dach R., Lutz S., Walser P., Fridez P. (eds.), Bern: AIUB, 2015, 612 p., available at:
  7. Betti B., Biagi L., Crespi M., Riguzzi F., GPS sensitivity analysis applied to non-permanent deformation control networks, J. Geodesy, 1999, Vol. 73, pp. 158–167.
  8. Blewitt G., Kreemer C., Hammond W. C., Gazeaux J., MIDAS robust trend estimator for accurate GPS station velocities without step detection, J. Geophysical Research: Solid Earth, 2016, Vol. 121, pp. 2054–2068.
  9. Böhm J., Niell A., Tregoning P., Schuh H., Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophysical Research Letters, 2006, Vol. 33, pp. L07304–07308.
  10. Elósegui P., Davis J. L., Oberlander D., Baena R., Ekström G., Accuracy of high-rate GPS for seismology, Geophysical Research Letters, 2006, Vol. 33, pp. L11308–11312.
  11. Gazeaux J., Williams S., King M., Bos M., Dach R., Deo M., Moore A. W., Ostini L., Petrie E., Roggero M., Teferle F. N., Olivares G., Webb F. H., Detecting offsets in GPS time series: first results from the detection of offsets in GPS experiment, J. Geophysical Research: Solid Earth, 2013, Vol. 118, pp. 2397–2407.
  12. Gregorius T., GIPSY-OASIS II. How it works… Department of Geomatics, University of Newcastle upon Tyne, USA, 1996, 150 p.
  13. Herring T. A., King R. W., Floyd M. A., McClusky S. C., Introduction to GAMIT/GLOBK Release 10.7., Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, USA, 2018, 54 p., available at: URL:
  14. Hofmann-Wellenhof B., Lichtenegger H., Walse E., GNSSGlobal Navigation Satellite Systems. GPS, GLONASS, GALILEO and more, Wien: Springer Science & Business Media, 2008, 518 p.
  15. Kleinherenbrink M., Riva R., Frederikse T., A comparison of methods to estimate vertical land motion trends from GNSS and altimetry at tide gauge stations, Ocean Science, 2018, Vol. 14, pp. 187–204.
  16. Ray R. D., Ponte R. M., Barometric tides from ECMWF operational analyses, Annales Geophysicae, 2003, Vol. 21, Issue 8, pp. 1897–1910.
  17. Sorokin A. A., Makogonov S. I., Korolev S. P., The Information Infrastructure for Collective Scientific Work in the Far East of Russia, Scientific and Technical Information Processing, 2017, Vol. 4, pp. 302–304.
  18. Steblov G. M., Kogan M. G., Levin B. V., Vasilenko N. F., Prytkov A. S., Frolov D. I., Spatially linked asperities of the 2006–2007 great Kuril earthquakes revealed by GPS, Geophysical Research Letters, 2008, Vol. 35, pp. L22306–22311.
  19. Steblov G. M., Ekström G., Kogan M. G., Freymueller J. T., Titkov N. N., Vasilenko N. F., Nettles M., Gabsatarov Yu. V., Prytkov A. S., Frolov D. I., Kondratyev M. N., First geodetic observations of a deep earthquake: The 2013 Sea of Okhotsk Mw 8.3, 611 km-deep event, Geophysical Research Letters, 2014, Vol. 41, pp. 3826–3832.
  20. Wdowinski S., Bock Y., Zhang J., Fang P., Genrich J., Southern California Permanent GPS Geodetic Array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake, J. Geophysical Research, 1997, Vol. 102, No. B8, pp. 18057–18070.
  21. Zumberge J. F., Heflin M. B., Jefferson D. C., Watkins M. M., Webb F. H., Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophysical Research, 1997, Vol. 102(B3), pp. 5005–5017.